Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-Calretinin antibody


Antibody ID


Target Antigen

Calretinin human, mouse, rat

Proper Citation

(Millipore Cat# AB5054, RRID:AB_2068506)


polyclonal antibody


seller recommendations: IH, IH(P), WB;
This entry has been consolidated with AB_11212775, AB_10055164by curator 1/2018.

Host Organism




Highly segregated localization of the functionally related vps10p receptors sortilin and SorCS2 during neurodevelopment.

  • Boggild S
  • J. Comp. Neurol.
  • 2018 Jun 1

Literature context: Millipore Cat# AB_5054, RRID:AB_2068506


Nervous system development is a precisely orchestrated series of events requiring a multitude of intrinsic and extrinsic cues. Sortilin and SorCS2 are members of the Vps10p receptor family with complementary influence on some of these cues including the neurotrophins (NTs). However, the developmental time points where sortilin and SorCS2 exert their activities in conjunction or independently still remain unclear. In this study we present the characterization of the spatiotemporal expression pattern of sortilin and SorCS2 in the developing murine nervous system. Sortilin is highly expressed in the fetal nervous system with expression localized to distinct cell populations. Expression was high in neurons of the cortical plate and developing allocortex, as well as subpallial structures. Furthermore, the neuroepithelium lining the ventricles and the choroid plexus showed high expression of sortilin, together with the developing retina, spinal ganglia, and sympathetic ganglia. In contrast, SorCS2 was confined in a marked degree to the thalamus and, at E13.5, the floor plate from midbrain rostrally to spinal cord caudally. SorCS2 was also found in the ventricular zones of the ventral hippocampus and nucleus accumbens areas, in the meninges and in Schwann cells. Hence, sortilin and SorCS2 are extensively present in several distinct anatomical areas in the developing nervous system and are rarely co-expressed. Possible functions of sortilin and SorCS2 pertain to NT signaling, axon guidance and beyond. The present data will form the basis for hypotheses and study designs for unravelling the functions of sortilin and SorCS2 during the establishment of neuronal structures and connections.

Funding information:
  • NIGMS NIH HHS - R01 GM090158(United States)

Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis.

  • Giannakopoulou A
  • J. Neurosci. Res.
  • 2018 Mar 12

Literature context: # AB5054, RRID:AB_2068506, rabbit, p


Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of chronic inflammation remains controversial. In this study the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis was used to investigate the long-term effects of T cell-mediated central nervous system inflammation on hippocampal neurogenesis. 5-Bromodeoxyuridine (BrdU)-labeled subpopulations of hippocampal cells in EAE and control mice (coexpressing GFAP, doublecortin, NeuN, calretinin, and S100) were quantified at the recovery phase, 21 days after BrdU administration, to estimate alterations on the rate and differentiation pattern of the neurogenesis process. The core features of EAE mice DG are (i) elevated number of newborn (BrdU+) cells indicating vigorous proliferation, which in the long term subsided; (ii) enhanced migration of newborn cells into the granule cell layer; (iii) increased level of immature neuronal markers (including calretinin and doublecortin); (iv) trending decrease in the percentage of newborn mature neurons; and (v) augmented gliogenesis and differentiation of newborn neural precursor cells (NPCs) to mature astrocytes (BrdU+/S100+). Although the inflammatory environment in the brain of EAE mice enhances the proliferation of hippocampal NPCs, in the long term neurogenesis is progressively depleted, giving prominence to gliogenesis. The discrepancy between the high number of immature cells and the low number of mature newborn cells could be the result of a caused defect in the maturation pathway. © 2016 Wiley Periodicals, Inc.

Confirming a Role for α9nAChRs and SK Potassium Channels in Type II Hair Cells of the Turtle Posterior Crista.

  • Parks XX
  • Front Cell Neurosci
  • 2017 Dec 5

Literature context: Millipore, Billerica, MA; item #RRID:AB_5054, lot LV1552190, 1:1,000 dilutio


In turtle posterior cristae, cholinergic vestibular efferent neurons (VENs) synapse on type II hair cells, bouton afferents innervating type II hair cells, and afferent calyces innervating type I hair cells. Electrical stimulation of VENs releases acetylcholine (ACh) at these synapses to exert diverse effects on afferent background discharge including rapid inhibition of bouton afferents and excitation of calyx-bearing afferents. Efferent-mediated inhibition is most pronounced in bouton afferents innervating type II hair cells near the torus, but becomes progressively smaller and briefer when moving longitudinally through the crista toward afferents innervating the planum. Sharp-electrode recordings have inferred that efferent-mediated inhibition of bouton afferents requires the sequential activation of alpha9-containing nicotinic ACh receptors (α9*nAChRs) and small-conductance, calcium-dependent potassium channels (SK) in type II hair cells. Gradations in the strength of efferent-mediated inhibition across the crista likely reflect variations in α9*nAChRs and/or SK activation in type II hair cells from those different regions. However, in turtle cristae, neither inference has been confirmed with direct recordings from type II hair cells. To address these gaps, we performed whole-cell, patch-clamp recordings from type II hair cells within a split-epithelial preparation of the turtle posterior crista. Here, we can easily visualize and record hair cells while maintaining their native location within the neuroepithelium. Consistent with α9*nAChR/SK activation, ACh-sensitive currents in type II hair cells were inward at hyperpolarizing potentials but reversed near -90 mV to produce outward currents that typically peaked around -20 mV. ACh-sensitive currents were largest in torus hair cells but absent from hair cells near the planum. In current clamp recordings under zero-current conditions, ACh robustly hyperpolarized type II hair cells. ACh-sensitive responses were reversibly blocked by the α9nAChR antagonists ICS, strychnine, and methyllycaconitine as well as the SK antagonists apamin and UCL1684. Intact efferent terminals in the split-epithelial preparation spontaneously released ACh that also activated α9*nAChRs/SK in type II hair cells. These release events were accelerated with high-potassium external solution and all events were blocked by strychnine, ICS, methyllycaconitine, and apamin. These findings provide direct evidence that activation of α9*nAChR/SK in turtle type II hair cells underlies efferent-mediated inhibition of bouton afferents.

Funding information:
  • NIAMS NIH HHS - R03-AR053275(United States)
  • NIDCD NIH HHS - P30 DC005409()
  • NIDCD NIH HHS - R01 DC008981()

Developmental and adult characterization of secretagogin expressing amacrine cells in zebrafish retina.

  • Dudczig S
  • PLoS ONE
  • 2017 Sep 26

Literature context: anti-calretinin (CR) antibody (RRID:AB_2068506, 1:2,000) generated against rec


Calcium binding proteins show stereotypical expression patterns within diverse neuron types across the central nervous system. Here, we provide a characterization of developmental and adult secretagogin-immunolabelled neurons in the zebrafish retina with an emphasis on co-expression of multiple calcium binding proteins. Secretagogin is a recently identified and cloned member of the F-hand family of calcium binding proteins, which labels distinct neuron populations in the retinas of mammalian vertebrates. Both the adult distribution of secretagogin labeled retinal neurons as well as the developmental expression indicative of the stage of neurogenesis during which this calcium binding protein is expressed was quantified. Secretagogin expression was confined to an amacrine interneuron population in the inner nuclear layer, with monostratified neurites in the center of the inner plexiform layer and a relatively regular soma distribution (regularity index > 2.5 across central-peripheral areas). However, only a subpopulation (~60%) co-labeled with gamma-aminobutyric acid as their neurotransmitter, suggesting that possibly two amacrine subtypes are secretagogin immunoreactive. Quantitative co-labeling analysis with other known amacrine subtype markers including the three main calcium binding proteins parvalbumin, calbindin and calretinin identifies secretagogin immunoreactive neurons as a distinct neuron population. The highest density of secretagogin cells of ~1800 cells / mm2 remained relatively evenly along the horizontal meridian, whilst the density dropped of to 125 cells / mm2 towards the dorsal and ventral periphery. Thus, secretagogin represents a new amacrine label within the zebrafish retina. The developmental expression suggests a possible role in late stage differentiation. This characterization forms the basis of functional studies assessing how the expression of distinct calcium binding proteins might be regulated to compensate for the loss of one of the others.

ARX polyalanine expansion mutations lead to migration impediment in the rostral cortex coupled with a developmental deficit of calbindin-positive cortical GABAergic interneurons.

  • Lee K
  • Neuroscience
  • 2017 Aug 15

Literature context: e AB5054, RRID:AB_2068506); rabbit a


The Aristaless-related homeobox gene (ARX) is indispensable for interneuron development. Patients with ARX polyalanine expansion mutations of the first two tracts (namely PA1 and PA2) suffer from intellectual disability of varying severity, with seizures a frequent comorbidity. The impact of PA1 and PA2 mutations on the brain development is unknown, hindering the search for therapeutic interventions. Here, we characterized the disturbances to cortical interneuron development in mice modeling the two most common ARX polyalanine expansion mutations in human. We found a consistent ∼40-50% reduction of calbindin-positive interneurons, but not Stt+ or Cr+ interneurons, within the cortex of newborn hemizygous mice (p=0.024) for both mutant strains compared to wildtype (p=0.011). We demonstrate that this was a consequence of calbindin precursor cells being arrested or delayed at the ventral subpallium en route of tangential migration. Ex-vivo assay validated this migration deficit in PA1 cells (p=0.0002) suggesting that the defect is contributed by intrinsic loss of Arx function within migrating cells. Both humans and mice with PA1 mutations present with severe clinical features, including intellectual disability and infantile spasms. Our data further demonstrated the pathogenic mechanism was robustly shared between PA1 and PA2 mutations, as previously reported including Arx protein reduction and overlapping transcriptome profiles within the developing mouse brains. Data from our study demonstrated that cortical calbindin interneuron development and migration is negatively affected by ARX polyalanine expansion mutations. Understanding the cellular pathogenesis contributing to disease manifestation is necessary to screen efficacy of potential therapeutic interventions.

In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish Tg(nr4a2a:eGFP) transgenics.

  • Goodings L
  • J. Comp. Neurol.
  • 2017 Jun 1

Literature context: antibody (RRID:AB_2068506) specifica


The Nuclear receptor subfamily 4 group A member 2 (Nr4a2) is crucial for the formation or maintenance of dopaminergic neurons in the central nervous system including the retina, where dopaminergic amacrine cells contribute to visual function. Little is known about which cells express Nr4a2 at which developmental stage. Furthermore, whether Nr4a2 functions in combination with other genes is poorly understood. Thus, we generated a novel transgenic to visualize Nr4a2 expression in vivo during zebrafish retinogenesis. A 4.1 kb fragment of the nr4a2a promoter was used to drive green fluorescent protein expression in this Tg(nr4a2a:eGFP) line. In situ hybridization showed that transgene expression follows endogenous RNA expression at a cellular level. Temporal expression and lineages were quantified using in vivo time-lapse imaging in embryos. Nr4a2 expressing retinal subtypes were characterized immunohistochemically. Nr4a2a:eGFP labeled multiple neuron subtypes including 24.5% of all amacrine interneurons. Nr4a2a:eGFP labels all tyrosine hydroxylase labeled dopaminergic amacrine cells, and other nondopaminergic GABAergic amacrine populations. Nr4a2a:eGFP is confined to a specific progenitor lineage identified by sequential expression of the bhlh transcription factor Atonal7 (Atoh7) and Pancreas transcription factor 1a (Ptf1a), and labels postmitotic postmigratory amacrine cells. Thus, developmental Nr4a2a expression indicates a role during late differentiation of specific amacrine interneurons. Tg(nr4a2a:eGFP) is an early marker of distinct neurons including dopaminergic amacrine cells. It can be utilized to assess consequences of gene manipulations and understand whether Nr4a2 only carries out its role in the presence of specific coexpressed genes. This will allow Nr4a2 use to be refined for regenerative approaches.

Anatomy and spatial organization of Müller glia in mouse retina.

  • Wang J
  • J. Comp. Neurol.
  • 2017 Jun 1

Literature context: e AB5054, RRID:AB_2068506) labeled t


Müller glia, the most abundant glia of vertebrate retina, have an elaborate morphology characterized by a vertical stalk that spans the retina and branches in each retinal layer. Müller glia play diverse, critical roles in retinal homeostasis, which are presumably enabled by their complex anatomy. However, much remains unknown, particularly in mouse, about the anatomical arrangement of Müller cells and their arbors, and how these features arise in development. Here we use membrane-targeted fluorescent proteins to reveal the fine structure of mouse Müller arbors. We find sublayer-specific arbor specializations within the inner plexiform layer (IPL) that occur consistently at defined laminar locations. We then characterize Müller glia spatial patterning, revealing how individual cells collaborate to form a pan-retinal network. Müller cells, unlike neurons, are spread across the retina with homogenous density, and their arbor sizes change little with eccentricity. Using Brainbow methods to label neighboring cells in different colors, we find that Müller glia tile retinal space with minimal overlap. The shape of their arbors is irregular but nonrandom, suggesting that local interactions between neighboring cells determine their territories. Finally, we identify a developmental window at postnatal Days 6 to 9 when Müller arbors first colonize the synaptic layers beginning in stereotyped inner plexiform layer sublaminae. Together, our study defines the anatomical arrangement of mouse Müller glia and their network in the radial and tangential planes of the retina, in development and adulthood. The local precision of Müller glia organization suggests that their morphology is sculpted by specific cell to cell interactions with neurons and each other.

Funding information:
  • NEI NIH HHS - P30 EY005722()
  • NEI NIH HHS - R01 EY024694()

Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice.

  • Bucks SA
  • Elife
  • 2017 Mar 6

Literature context: n [1:100, RRID:AB_2068506, EMD Milli


Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury.

Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions.

  • Botterill JJ
  • J. Comp. Neurol.
  • 2017 Feb 1

Literature context: . AB5054; RRID:AB_2068506) is raised


The vulnerability and plasticity of hippocampal GABAergic interneurons is a topic of broad interest and debate in the field of epilepsy. In this experiment, we used the electrical kindling model of epilepsy to determine whether seizures that originate in different brain regions have differential effects on hippocampal interneuron subpopulations. Long-Evans rats received 99 electrical stimulations of the hippocampus, amygdala, or caudate nucleus, followed by sacrifice and immunohistochemical or western blot analyses. We analyzed markers of dendritic (somatostatin), perisomatic (parvalbumin), and interneuron-selective (calretinin) inhibition, as well as an overall indicator (GAD67) of interneuron distribution across all major hippocampal subfields. Our results indicate that kindling produces selective effects on the number and morphology of different functional classes of GABAergic interneurons. In particular, limbic kindling appears to enhance dendritic inhibition, indicated by a greater number of somatostatin-immunoreactive (-ir) cells in the CA1 pyramidal layer and robust morphological sprouting in the dentate gyrus. We also found a reduction in the number of interneuron-selective calretinin-ir cells in the dentate gyrus of hippocampal-kindled rats, which suggests a possible reduction of synchronized dendritic inhibition. In contrast, perisomatic inhibition indicated by parvalbumin immunoreactivity appears to be largely resilient to the effects of kindling. Finally, we found a significant induction in the number of GAD67-cells in caudate-kindled rats in the dentate gyrus and CA3 hippocampal subfields. Taken together, our results demonstrate that kindling has subfield-selective effects on the different functional classes of hippocampal GABAergic interneurons. J. Comp. Neurol. 525:389-406, 2017. © 2016 Wiley Periodicals, Inc.

Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.

  • Shekhar K
  • Cell
  • 2016 Aug 25

Literature context: T#AB5054; RRID:AB_2068506 Mouse mono


Patterns of gene expression can be used to characterize and classify neuronal types. It is challenging, however, to generate taxonomies that fulfill the essential criteria of being comprehensive, harmonizing with conventional classification schemes, and lacking superfluous subdivisions of genuine types. To address these challenges, we used massively parallel single-cell RNA profiling and optimized computational methods on a heterogeneous class of neurons, mouse retinal bipolar cells (BCs). From a population of ∼25,000 BCs, we derived a molecular classification that identified 15 types, including all types observed previously and two novel types, one of which has a non-canonical morphology and position. We validated the classification scheme and identified dozens of novel markers using methods that match molecular expression to cell morphology. This work provides a systematic methodology for achieving comprehensive molecular classification of neurons, identifies novel neuronal types, and uncovers transcriptional differences that distinguish types within a class.

Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse.

  • Jordan PM
  • J. Comp. Neurol.
  • 2015 Jun 1

Literature context: (rabbit), RRID:AB_2068506 Immunoblot


In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models used by our laboratory. Here we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to use these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of red-eared turtles (Trachemys scripta elegans), zebra finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide. Comparisons of efferent innervation patterns among the three species are discussed.

Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex.

  • Levy C
  • J. Comp. Neurol.
  • 2015 Mar 1

Literature context: (RRID:AB_2068506)


Mounting evidence has demonstrated that a specialized extracellular matrix exists in the mammalian brain and that this glycoprotein-rich matrix contributes to many aspects of brain development and function. The most prominent supramolecular assemblies of these extracellular matrix glycoproteins are perineuronal nets, specialized lattice-like structures that surround the cell bodies and proximal neurites of select classes of interneurons. Perineuronal nets are composed of lecticans, a family of chondroitin sulfate proteoglycans that includes aggrecan, brevican, neurocan, and versican. These lattice-like structures emerge late in postnatal brain development, coinciding with the ending of critical periods of brain development. Despite our knowledge of the presence of lecticans in perineuronal nets and their importance in regulating synaptic plasticity, we know little about the development or distribution of the extracellular proteases that are responsible for their cleavage and turnover. A subset of a large family of extracellular proteases (called a disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) is responsible for endogenously cleaving lecticans. We therefore explored the expression pattern of two aggrecan-degrading ADAMTS family members, ADAMTS15 and ADAMTS4, in the hippocampus and neocortex. Here, we show that both lectican-degrading metalloproteases are present in these brain regions and that each exhibits a distinct temporal and spatial expression pattern. Adamts15 mRNA is expressed exclusively by parvalbumin-expressing interneurons during synaptogenesis, whereas Adamts4 mRNA is exclusively generated by telencephalic oligodendrocytes during myelination. Thus, ADAMTS15 and ADAMTS4 not only exhibit unique cellular expression patterns but their developmental upregulation by these cell types coincides with critical aspects of neural development.

Immunofluorescent visualization of mouse interneuron subtypes.

  • Molgaard S
  • F1000Res
  • 2014 Dec 16

Literature context: :1000MilliporeAb5054 20 xx 170 AB_2068506 Anti- Calretinin 1, 2 SheepP


The activity of excitatory neurons is controlled by a highly diverse population of inhibitory interneurons. These cells show a high level of physiological, morphological and neurochemical heterogeneity, and play highly specific roles in neuronal circuits. In the mammalian hippocampus, these are divided into 21 different subtypes of GABAergic interneurons based on their expression of different markers, morphology and their electrophysiological properties. Ideally, all can be marked using an antibody directed against the inhibitory neurotransmitter GABA, but parvalbumin, calbindin, somatostatin, and calretinin are also commonly used as markers to narrow down the specific interneuron subtype. Here, we describe a journey to find the necessary immunological reagents for studying GABAergic interneurons of the mouse hippocampus. Based on web searches there are several hundreds of different antibodies on the market directed against these four markers. Searches in the literature databases allowed us to narrow it down to a subset of antibodies most commonly used in publications. However, in our hands the most cited ones did not work for immunofluorescence stainings of formaldehyde fixed tissue sections and cultured hippocampal neurons, and we had to immunostain our way through thirteen different commercial antibodies before finally finding a suitable antibody for each of the four markers. The antibodies were evaluated based on signal-to-noise ratios as well as if positive cells were found in layers of the hippocampus where they have previously been described. Additionally, the antibodies were also tested on sections from mouse spinal cord with similar criteria for specificity of the antibodies. Using the antibodies with a high rating on pAbmAbs, an antibody review database, stainings with high signal-to-noise ratios and location of the immunostained cells in accordance with the literature could be obtained, making these antibodies suitable choices for studying the GABAergic system.

Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs.

  • Pujol R
  • J. Comp. Neurol.
  • 2014 Oct 1

Literature context: g No. AB_5054 Rabbit polyclonal RRID:AB_2068506 Recombinant rat calretinin (hom


Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates.

RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke.

  • Tokami H
  • Brain Res.
  • 2013 Jun 23

Literature context:


Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES) is a well-known pro-inflammatory chemokine and its role in ischemic stroke remains controversial. We examined the significance of RANTES in ischemic stroke and aimed to elucidate the direct effect of RANTES on neurons. Plasma concentrations of major C-C chemokines, including RANTES, and neurotrophic factors were examined in 171 ischemic stroke patients and age- and gender- matched healthy subjects. Plasma concentrations of RANTES at day 0 after onset were significantly elevated in stroke patients, compared with controls, and were highly correlated with those of BDNF, EGF, and VEGF. In a mouse middle cerebral artery occlusion model (MCAO), plasma RANTES was significantly elevated and the expression of RANTES was markedly upregulated in neurons particularly in peri-infarct areas. The expression of CCR3 and CCR5, receptors for RANTES, was also induced in neurons, while another receptor, CCR1, was observed in vascular cells, in peri-infarct areas after MCAO. We examined the effects of RANTES on differentiated PC12 cells, a model of neuronal cells. Treatment with RANTES induced the activation of Akt and Erk1/2, and attenuated the cleavage of caspase-3 in the cells. RANTES increased the expression of BDNF, EGF, and VEGF in the cells. Moreover, RANTES maintained the number of cells under serum free conditions. The RANTES-mediated upregulation of neurotrophic factors and cell survival were significantly attenuated by the inhibition of Akt or Erk1/2. Taken together, RANTES is an interesting chemokine that is produced from neurons after ischemic stroke and has the potential to protect neurons directly or indirectly through the production of neurotrophic factors in peri-infarct areas.

Funding information:
  • NIDDK NIH HHS - 5R01DK069983-02(United States)

Nuclear receptor COUP-TFII-expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons.

  • Cai Y
  • J. Comp. Neurol.
  • 2013 Feb 1

Literature context:


Neocortical GABAergic interneurons in rodents originate from subpallial progenitor zones. The majority of mouse neocortical interneurons are derived from the medial and caudal ganglionic eminences (MGE and CGE, respectively) and the preoptic area (POA). It is controversial whether the lateral ganglionic eminence (LGE) also generates neocortical interneurons. Previously it was shown that the transcription factor COUP-TFII is expressed in the CGE; here we show that COUP-TFII is also expressed in the dorsal MGE, dorsal LGE (dMGE and dLGE, respectively), and POA. In the adult neocortex, COUP-TFII+/somatostatin (SOM)+ interneurons are mainly located in layer V. Using a genetic fate-mapping approach (Shh-Cre and Nkx2.1-Cre), we demonstrate that the POA and ventral MGE do not give rise to COUP-TFII+ neocortical interneurons, suggesting that the dMGE is the source of COUP-TFII+/SOM+ neocortical interneurons. We also observed a migratory stream of COUP-TFII+/Sp8+ cells emanating from the dLGE and CGE to the neocortex mainly through the subventricular zone at later embryonic stages. Slice culture experiments in which dLGE progenitors were labeled with BrdU provided additional evidence that the dLGE generates neocortical interneurons. While earlier-born dMGE-derived COUP-TFII+ interneurons occupy cortical layer V, later-born dLGE- and CGE-derived COUP-TFII+ ones preferentially occupy superficial cortical layers. A similar laminar distribution was observed following neonatal transplantation of embryonic day (E)14.5 dMGE and E15.5 dLGE. These results provide novel information about interneuron fate and position from spatially and temporally distinct origins in the ganglionic eminences.

Funding information:
  • Howard Hughes Medical Institute - R01 GM060124(United States)
  • NINDS NIH HHS - 5R01NS037070(United States)

beta-Endorphin expression in the mouse retina.

  • Gallagher SK
  • J. Comp. Neurol.
  • 2010 Aug 1

Literature context:


Evidence showing expression of endogenous opioids in the mammalian retina is sparse. In the present study we examined a transgenic mouse line expressing an obligate dimerized form of Discosoma red fluorescent protein (DsRed) under the control of the pro-opiomelanocortin promoter and distal upstream regulatory elements to assess whether pro-opiomelanocortin peptide (POMC), and its opioid cleavage product, beta-endorphin, are expressed in the mouse retina. Using double label immunohistochemistry we found that DsRed fluorescence was restricted to a subset of GAD-67-positive cholinergic amacrine cells of both orthotopic and displaced subtypes. About 50% of cholinergic amacrine cells colocalized DsRed and a large fraction of DsRed-expressing amacrine cells was positive for beta-endorphin immunostaining, whereas beta-endorphin-immunoreactive neurons were absent in retinas of POMC null mice. Our findings contribute to a growing body of evidence demonstrating that opioid peptides are an integral component of vertebrate retinas, including those of mammals.

Funding information:
  • NIDDK NIH HHS - U01 DK60401(United States)

Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum.

  • Ibáñez-Sandoval O
  • J. Neurosci.
  • 2010 May 19

Literature context: or anti-CR polyclonal (catalog #RRID:AB_5054; Millipore Corporation) antibod


Whole-cell recordings were obtained from tyrosine hydroxylase-expressing (TH(+)) neurons in striatal slices from bacterial artificial chromosome transgenic mice that synthesize enhanced green fluorescent protein (EGFP) selectively in neurons expressing TH transcriptional regulatory sequences. Stereological cell counting indicated that there were approximately 2700 EGFP-TH(+) neurons/striatum. Whole-cell recordings in striatal slices demonstrated that EGFP-TH(+) neurons comprise four electrophysiologically distinct neuron types whose electrophysiological properties have not been reported previously in striatum. EGFP-TH(+) neurons were identified in retrograde tracing studies as interneurons. Recordings from synaptically connected pairs of EGFP-TH(+) interneurons and spiny neurons showed that the interneurons elicited GABAergic IPSPs/IPSCs in spiny neurons powerful enough to significantly delay evoked spiking. EGFP-TH(+) interneurons responded to local or cortical stimulation with glutamatergic EPSPs. Local stimulation also elicited GABA(A) IPSPs, at least some of which arose from identified spiny neurons. Single-cell reverse transcription-PCR showed expression of VMAT1 in EGFP-TH(+) interneurons, consistent with previous suggestions that these interneurons may be dopaminergic as well as GABAergic. All four classes of interneurons were medium sized with modestly branching, varicose dendrites, and dense, highly varicose axon collateral fields. These data show for the first time that there exists in the normal rodent striatum a substantial population of TH(+)/GABAergic interneurons comprising four electrophysiologically distinct subtypes whose electrophysiological properties differ significantly from those of previously described striatal GABAergic interneurons. These interneurons are likely to play an important role in striatal function through fast GABAergic synaptic transmission in addition to, and independent of, their potential role in compensation for dopamine loss in experimental or idiopathic Parkinson's disease.

Distribution of high-conductance calcium-activated potassium channels in rat vestibular epithelia.

  • Schweizer FE
  • J. Comp. Neurol.
  • 2009 Nov 10

Literature context:


Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development.

Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum.

  • Yang Z
  • J. Comp. Neurol.
  • 2008 Nov 1

Literature context:


Ischemia-induced striatal neurogenesis from progenitors in the adjacent subventricular zone (SVZ) in young and adult rodents has been reported. However, it has not been established whether the precursors that reside in the SVZ retain the capacity to produce the full range of striatal neurons that has been destroyed. By using a neonatal rat model of hypoxic/ischemic brain damage, we show here that virtually all of the newly produced striatal neurons are calretinin (CR)-immunoreactive (+), but not DARPP-32(+), calbindin-D-28K(+), parvalbumin(+), somatostatin(+), or choline acetyltransferase(+). Retroviral fate-mapping studies confirm that these newly born CR(+) neurons are indeed descendants of the SVZ. Our studies indicate that, although the postnatal SVZ has the capacity to produce a range of neurons, only a subset of this repertoire is manifested in the brain after injury.

Fate mapping Nkx2.1-lineage cells in the mouse telencephalon.

  • Xu Q
  • J. Comp. Neurol.
  • 2008 Jan 1

Literature context:


The homeodomain transcription factor Nkx2.1 is expressed in the pallidal (subcortical) telencephalon, including the medial ganglionic eminence (MGE) and preoptic area. Studies have shown that Nkx2.1 is required for normal patterning of the MGE and for the specification of the parvalbumin (PV)- and somatostatin (SST)-expressing cortical interneurons. To define the contribution of Nkx2.1 lineages to neurons in the mature telencephalon, we have generated transgenic mice carrying the genomic integration of a modified bacterial artificial chromosome (BAC) in which the second exon of Nkx2.1 is replaced by the Cre recombinase. Analysis of these mice has found that they express the Cre recombinase and Cre reporters within Nkx2.1-expressing domains of the brain, thyroid, pituitary, and lung. Telencephalic expression of reporters begins at about embryonic day 10.5. Expression both of Cre and of recombination-based Cre reporters is weaker within the dorsalmost region of the MGE than in other Nkx2.1-expressing regions. In this paper, we present fate-mapping data on Nkx2.1-lineage neurons throughout the telencephalon, including the cerebral cortex, amygdala, olfactory bulb, striatum, globus pallidus, septum, and nucleus basalis.

Funding information:
  • NINDS NIH HHS - R01 NS059600(United States)

Distribution of Kv3.3 potassium channel subunits in distinct neuronal populations of mouse brain.

  • Chang SY
  • J. Comp. Neurol.
  • 2007 Jun 20

Literature context:


Kv3.3 proteins are pore-forming subunits of voltage-dependent potassium channels, and mutations in the gene encoding for Kv3.3 have recently been linked to human disease, spinocerebellar ataxia 13, with cerebellar and extracerebellar symptoms. To understand better the functions of Kv3.3 subunits in brain, we developed highly specific antibodies to Kv3.3 and analyzed immunoreactivity throughout mouse brain. We found that Kv3.3 subunits are widely expressed, present in important forebrain structures but particularly prominent in brainstem and cerebellum. In forebrain and midbrain, Kv3.3 expression was often found colocalized with parvalbumin and other Kv3 subunits in inhibitory neurons. In brainstem, Kv3.3 was strongly expressed in auditory and other sensory nuclei. In cerebellar cortex, Kv3.3 expression was found in Purkinje and granule cells. Kv3.3 proteins were observed in axons, terminals, somas, and, unlike other Kv3 proteins, also in distal dendrites, although precise subcellular localization depended on cell type. For example, hippocampal dentate granule cells expressed Kv3.3 subunits specifically in their mossy fiber axons, whereas Purkinje cells of the cerebellar cortex strongly expressed Kv3.3 subunits in axons, somas, and proximal and distal, but not second- and third-order, dendrites. Expression in Purkinje cell dendrites was confirmed by immunoelectron microscopy. Kv3 channels have been demonstrated to rapidly repolarize action potentials and support high-frequency firing in various neuronal populations. In this study, we identified additional populations and subcellular compartments that are likely to sustain high-frequency firing because of the expression of Kv3.3 and other Kv3 subunits.

Funding information:
  • NINDS NIH HHS - K23NS078056(United States)

Physiological and morphological characterization of parvalbumin-containing interneurons of the rat basolateral amygdala.

  • Rainnie DG
  • J. Comp. Neurol.
  • 2006 Sep 1

Literature context:


The basolateral amygdala (BLA) is critical for the generation of emotional behavior and the formation of emotional memory. Understanding the neuronal mechanisms that contribute to emotional information processing in the BLA will ultimately require knowledge of the anatomy and physiology of its constituent neurons. Two major cell classes exist in the BLA, pyramidal projection neurons and nonpyramidal interneurons. Although the properties of projection neurons have been studied in detail, little is known about the properties of BLA interneurons. We have used whole-cell patch clamp recording techniques to examine the physiological properties of 48 visually identified putative interneurons from the rat anterior basolateral amygdalar nucleus. Here, we report that BLA interneurons can be differentiated into four electrophysiologically distinct subtypes based on their intrinsic membrane properties and their response to afferent synaptic input. Interneuron subtypes were named according to their characteristic firing pattern generated in response to transient depolarizing current injection and were grouped as follows: 1) burst-firing interneurons (n = 13), 2) regular-firing interneurons (n = 11), 3) fast-firing interneurons (n = 10), and 4) stutter-firing interneurons (n = 14). Post hoc histochemical visualization confirmed that all 48 recorded neurons had morphological properties consistent with their being local circuit interneurons. Moreover, by using triple immunofluorescence (for biocytin, calcium-binding proteins, and neuropeptides) in conjunction with patch clamp recording, we further demonstrated that over 60% of burst-firing and stutter-firing interneurons also expressed the calcium-binding protein parvalbumin (PV(+)). These data demonstrate that interneurons of the BLA show both physiological and neurochemical diversity. Moreover, we demonstrate that the burst- and stutter-firing patterns positively correlate with PV(+) immunoreactivity, suggesting that these neurons may represent functionally distinct subpopulations.

Funding information:
  • Biotechnology and Biological Sciences Research Council - JPA 1729(United Kingdom)