X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-P2Y4 Receptor antibody

RRID:AB_2040080

Antibody ID

AB_2040080

Target Antigen

P2Y4 Receptor See NCBI gene human, mouse, rat

Proper Citation

(Alomone Labs Cat# APR-006, RRID:AB_2040080)

Clonality

polyclonal antibody

Comments

Useful for Western Blot, Immunohistochemistry, Immunocytochemistry, Immunoprecipitation, Indirect Flow Cytometry

Host Organism

rabbit

Vendor

Alomone Labs

Cat Num

APR-006

Publications that use this research resource

Cellular Migration Ability Is Modulated by Extracellular Purines in Ovarian Carcinoma SKOV-3 Cells.

  • Martínez-Ramírez AS
  • J. Cell. Biochem.
  • 2018 Jan 2

Literature context:


Abstract:

Extracellular nucleotides and nucleosides have emerged as important elements regulating tissue homeostasis. Acting through specific receptors, have the ability to control gene expression patterns to direct cellular fate. We observed that SKOV-3 cells express the ectonucleotidases: ectonucleotide pyrophosphatase 1 (ENPP1), ecto-5'-nucleotidase (NT5E), and liver alkaline phosphatase (ALPL). Strikingly, in pulse and chase experiments supplemented with ATP, SKOV-3 cells exhibited low catabolic efficiency in the conversion of ADP into AMP, but they were efficient in converting AMP into adenosine. Since these cells release ATP, we proposed that the conversion of ADP into AMP is a regulatory node associated with the migratory ability and the mesenchymal characteristics shown by SKOV-3 cells under basal conditions. The landscape of gene expression profiles of SKOV-3 cell cultures treated with apyrase or adenosine demonstrated similarities (e.g., decrease FGF16 transcript) and differences (e.g., the negative regulation of Wnt 2, and 10B by adenosine). Thus, in SKOV-3 we analyzed the migratory ability and the expression of epithelium to mesenchymal transition (EMT) markers in response to apyrase. Apyrase-treatment favored the epithelial-like phenotype, as revealed by the re-location of E-cadherin to the cell to cell junctions. Pharmacological approaches strongly suggested that the effect of Apyrase involved the accumulation of extracellular adenosine; this notion was strengthened when the incubation of the SKOV-3 cell with α,β-methylene ADP (CD73 inhibitor) or adenosine deaminase was sufficient to abolish the effect of apyrase on cell migration. Overall, adenosine signaling is a fine tune mechanism in the control of cell phenotype in cancer. J. Cell. Biochem. 118: 4468-4478, 2017. © 2017 Wiley Periodicals, Inc.

Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe.

  • Hawkins VE
  • Elife
  • 2017 Apr 7

Literature context:


Abstract:

Cerebral blood flow is highly sensitive to changes in CO2/H+ where an increase in CO2/H+ causes vasodilation and increased blood flow. Tissue CO2/H+ also functions as the main stimulus for breathing by activating chemosensitive neurons that control respiratory output. Considering that CO2/H+-induced vasodilation would accelerate removal of CO2/H+ and potentially counteract the drive to breathe, we hypothesize that chemosensitive brain regions have adapted a means of preventing vascular CO2/H+-reactivity. Here, we show in rat that purinergic signaling, possibly through P2Y2/4 receptors, in the retrotrapezoid nucleus (RTN) maintains arteriole tone during high CO2/H+ and disruption of this mechanism decreases the CO2ventilatory response. Our discovery that CO2/H+-dependent regulation of vascular tone in the RTN is the opposite to the rest of the cerebral vascular tree is novel and fundamentally important for understanding how regulation of vascular tone is tailored to support neural function and behavior, in this case the drive to breathe.

Funding information:
  • NHLBI NIH HHS - F32 HL126381()
  • NHLBI NIH HHS - P01 HL095488()
  • NHLBI NIH HHS - R01 HL104101()
  • NHLBI NIH HHS - R01 HL121706()
  • NHLBI NIH HHS - R01 HL131181()
  • NIDDK NIH HHS - R37 DK053832()

Increase of intracellular Ca2+ by P2Y but not P2X receptors in cultured cortical multipolar neurons of the rat.

  • Fischer W
  • J. Comp. Neurol.
  • 2009 Oct 10

Literature context:


Abstract:

The expression and functionality of P2X/P2Y receptor subtypes in multipolar nonpyramidal neurons of mixed cortical cell cultures were investigated by means of immunocytochemistry and fura-2 microfluorimetry. The morphological studies revealed that most of the neurons are immunoreactive for GABA and express a range of P2X/P2Y receptors, predominantly of the P2X(2,4,6) and P2Y(1,2) subtypes. P2X(1) and P2X(7) receptor immunoreactivity (IR) was found on thin axon-like processes and presynaptic structures, respectively. Application of ATP caused a small concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in most investigated neurons, whereas only about the half of these cells responded to 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP), ADPbetaS, 2MeSADP, or 2MeSATP and even fewer cells to UTP. In contrast, alpha,beta-meATP, UDP, and UDP-glucose failed to produce any [Ca2+]i signaling. The response to ATP itself was inhibited by pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Reactive Blue 2, 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179), and suramin (300 microM) as well as by a cyclopiazonic acid-induced depletion of intracellular Ca2+ stores. A Ca2+-free external medium tended to decrease the ATP-induced [Ca2+]i transients, although this action did not reach statistical significance. Various blockers of voltage-sensitive Ca2+ channels and the gap junction inhibitor carbenoxolone did not interfere with the effect of ATP, whereas a combination of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased it. Cross-desensitization experiments between ADPbetaS or UTP and ATP suggested that ATP acts on the one hand via P2Y(1,2) receptors and on the other hand by additional signaling mechanisms. These mechanisms may involve the release of glutamate (which in consequence activates ionotropic glutamate receptors) and the entry of Ca2+ via store-operated Ca2+ channels. Evidence for the presence of functional P2X receptors, in particular P2X(7), remains elusive.