Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-NeuN, clone A60, biotin conjugated antibody


Antibody ID


Target Antigen

NeuN clone A60 biotin conjugated m, r, h, ft, ch, sal, chicken/bird, xenopus/amphibian

Proper Citation

(Millipore Cat# MAB377B, RRID:AB_177621)


monoclonal antibody


seller recommendations: IgG1; IgG1 IC, IH, IH(P), WB; Western Blot; Immunohistochemistry; Immunocytochemistry

Host Organism




WT1-Expressing Interneurons Regulate Left-Right Alternation during Mammalian Locomotor Activity.

  • Haque F
  • J. Neurosci.
  • 2018 Jun 20

Literature context: pore, RRID:AB_177621).


The basic pattern of activity underlying stepping in mammals is generated by a neural network located in the caudal spinal cord. Within this network, the specific circuitry coordinating left-right alternation has been shown to involve several groups of molecularly defined interneurons. Here we characterize a population of spinal neurons that express the Wilms' tumor 1 (WT1) gene and investigate their role during locomotor activity in mice of both sexes. We demonstrate that WT1-expressing cells are located in the ventromedial region of the spinal cord of mice and are also present in the human spinal cord. In the mouse, these cells are inhibitory, project axons to the contralateral spinal cord, terminate in close proximity to other commissural interneuron subtypes, and are essential for appropriate left-right alternation during locomotion. In addition to identifying WT1-expressing interneurons as a key component of the locomotor circuitry, this study provides insight into the manner in which several populations of molecularly defined interneurons are interconnected to generate coordinated motor activity on either side of the body during stepping.SIGNIFICANCE STATEMENT In this study, we characterize WT1-expressing spinal interneurons in mice and demonstrate that they are commissurally projecting and inhibitory. Silencing of this neuronal population during a locomotor task results in a complete breakdown of left-right alternation, whereas flexor-extensor alternation was not significantly affected. Axons of WT1 neurons are shown to terminate nearby commissural interneurons, which coordinate motoneuron activity during locomotion, and presumably regulate their activity. Finally, the WT1 gene is shown to be present in the spinal cord of humans, raising the possibility of functional homology between these species. This study not only identifies a key component of the locomotor circuitry but also begins to unravel the connectivity among the growing number of molecularly defined interneurons that comprise this neural network.

Funding information:
  • NIGMS NIH HHS - R01 GM62483(United States)

Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs.

  • Saraf MP
  • J. Comp. Neurol.
  • 2018 Feb 26

Literature context: y (Mouse anti-NeuN, Catalog no. RRID:AB_177621 Millipore, Burlington MA). The


Mouse lemurs are the smallest of the living primates, and are members of the understudied radiation of strepsirrhine lemurs of Madagascar. They are thought to closely resemble the ancestral primates that gave rise to present day primates. Here we have used multiple histological and immunochemical methods to identify and characterize sensory areas of neocortex in four brains of adult lemurs obtained from a licensed breeding colony. We describe the laminar features for the primary visual area (V1), the secondary visual area (V2), the middle temporal visual area (MT) and area prostriata, somatosensory areas S1(3b), 3a, and area 1, the primary motor cortex (M1), and the primary auditory cortex (A1). V1 has "blobs" with "nonblob" surrounds, providing further evidence that this type of modular organization might have evolved early in the primate lineage to be retained in all extant primates. The laminar organization of V1 further supports the view that sublayers of layer 3 of primates have been commonly misidentified as sublayers of layer 4. S1 (area 3b) is proportionately wider than the elongated area observed in anthropoid primates, and has disruptions that may distinguish representations of the hand, face, teeth, and tongue. Primary auditory cortex is located in the upper temporal cortex and may include a rostral area, R, in addition to A1. The resulting architectonic maps of cortical areas in mouse lemurs can usefully guide future studies of cortical connectivity and function.

Funding information:
  • NCI NIH HHS - T32-CA09151(United States)
  • NEI NIH HHS - R01 EY002686()
  • NEI NIH HHS - R01 EY025422()

Non-Newly Generated, "Immature" Neurons in the Sheep Brain Are Not Restricted to Cerebral Cortex.

  • Piumatti M
  • J. Neurosci.
  • 2018 Jan 24

Literature context: NeuN Mouse 1:1000 RRID:AB_177621 Millipore


A newly proposed form of brain structural plasticity consists of non-newly generated, "immature" neurons of the adult cerebral cortex. Similar to newly generated neurons, these cells express the cytoskeletal protein Doublecortin (DCX), yet they are generated prenatally and then remain in a state of immaturity for long periods. In rodents, the immature neurons are restricted to the paleocortex, whereas in other mammals, they are also found in neocortex. Here, we analyzed the DCX-expressing cells in the whole sheep brain of both sexes to search for an indicator of structural plasticity at a cellular level in a relatively large-brained, long-living mammal. Brains from adult and newborn sheep (injected with BrdU and analyzed at different survival times) were processed for DCX, cell proliferation markers (Ki-67, BrdU), pallial/subpallial developmental origin (Tbr1, Sp8), and neuronal/glial antigens for phenotype characterization. We found immature-like neurons in the whole sheep cortex and in large populations of DCX-expressing cells within the external capsule and the surrounding gray matter (claustrum and amygdala). BrdU and Ki-67 detection at neonatal and adult ages showed that all of these DCX+ cells were generated during embryogenesis, not after birth. These results show that the adult sheep, unlike rodents, is largely endowed with non-newly generated neurons retaining immature features, suggesting that such plasticity might be particularly important in large-brained, long-living mammals.SIGNIFICANCE STATEMENT Brain plasticity is important in adaptation and brain repair. Structural changes span from synaptic plasticity to adult neurogenesis, the latter being highly reduced in large-brained, long-living mammals (e.g., humans). The cerebral cortex contains "immature" neurons, which are generated prenatally and then remain in an undifferentiated state for long periods, being detectable with markers of immaturity. We studied the distribution and developmental origin of these cells in the whole brain of sheep, relatively large-brained, long-living mammals. In addition to the expected cortical location, we also found populations of non-newly generated neurons in several subcortical regions (external capsule, claustrum, and amygdala). These results suggests that non-neurogenic, parenchymal structural plasticity might be more important in large mammals with respect to adult neurogenesis.

Funding information:
  • Howard Hughes Medical Institute - N01-AI-40096(United States)

Meis1 Coordinates Cerebellar Granule Cell Development by Regulating Pax6 Transcription, BMP Signaling and Atoh1 Degradation.

  • Owa T
  • J. Neurosci.
  • 2018 Jan 31

Literature context: ; RRID:AB_177621), Sox9 (1:500; goat; R&D System


Cerebellar granule cell precursors (GCPs) and granule cells (GCs) represent good models to study neuronal development. Here, we report that the transcription factor myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse GC development. We found that Meis1 is expressed in GC lineage cells and astrocytes in the cerebellum during development. Targeted disruption of the Meis1 gene specifically in the GC lineage resulted in smaller cerebella with disorganized lobules. Knock-down/knock-out (KO) experiments for Meis1 and in vitro assays showed that Meis1 binds to an upstream sequence of Pax6 to enhance its transcription in GCPs/GCs and also suggested that the Meis1-Pax6 cascade regulates morphology of GCPs/GCs during development. In the conditional KO (cKO) cerebella, many Atoh1-positive GCPs were observed ectopically in the inner external granule layer (EGL) and a similar phenomenon was observed in cultured cerebellar slices treated with a bone morphogenic protein (BMP) inhibitor. Furthermore, expression of Smad proteins and Smad phosphorylation were severely reduced in the cKO cerebella and Meis1-knock-down GCPs cerebella. Reduction of phosphorylated Smad was also observed in cerebellar slices electroporated with a Pax6 knock-down vector. Because it is known that BMP signaling induces Atoh1 degradation in GCPs, these findings suggest that the Meis1-Pax6 pathway increases the expression of Smad proteins to upregulate BMP signaling, leading to degradation of Atoh1 in the inner EGL, which contributes to differentiation from GCPs to GCs. Therefore, this work reveals crucial functions of Meis1 in GC development and gives insights into the general understanding of the molecular machinery underlying neural differentiation from neural progenitors.SIGNIFICANCE STATEMENT We report that myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse granule cell (GC) development. Here, we show Meis1 is expressed in GC precursors (GCPs) and GCs during development. Our knock-down and conditional knock-out (cKO) experiments and in vitro assays revealed that Meis1 is required for proper cerebellar structure formation and for Pax6 transcription in GCPs and GCs. The Meis1-Pax6 cascade regulates the morphology of GCs. In the cKO cerebella, Smad proteins and bone morphogenic protein (BMP) signaling are severely reduced and Atoh1-expressing GCPs are ectopically detected in the inner external granule layer. These findings suggest that Meis1 regulates degradation of Atoh1 via BMP signaling, contributing to GC differentiation in the inner EGL, and should provide understanding into GC development.

Funding information:
  • British Heart Foundation - RG/07/008/23674(United Kingdom)

Distribution of ELOVL4 in the Developing and Adult Mouse Brain.

  • Sherry DM
  • Front Neuroanat
  • 2017 May 16

Literature context: MAB377B. RRID:AB_177621; Mouse mon


ELOngation of Very Long chain fatty acids (ELOVL)-4 is essential for the synthesis of very long chain-fatty acids (fatty acids with chain lengths ≥ 28 carbons). The functions of ELOVL4 and its very long-chain fatty acid products are poorly understood at present. However, mutations in ELOVL4 cause neurodevelopmental or neurodegenerative diseases that vary according to the mutation and inheritance pattern. Heterozygous inheritance of different ELOVL4 mutations causes Stargardt-like Macular Dystrophy or Spinocerebellar Ataxia type 34. Homozygous inheritance of ELOVL4 mutations causes more severe disease characterized by seizures, intellectual disability, ichthyosis, and premature death. To better understand ELOVL4 and very long chain fatty acid function in the brain, we examined ELOVL4 expression in the mouse brain between embryonic day 18 and postnatal day 60 by immunolabeling using ELOVL4 and other marker antibodies. ELOVL4 was widely expressed in a region- and cell type-specific manner, and was restricted to cell bodies, consistent with its known localization to endoplasmic reticulum. ELOVL4 labeling was most prominent in gray matter, although labeling also was present in some cells located in white matter. ELOVL4 was widely expressed in the developing brain by embryonic day 18 and was especially pronounced in regions underlying the lateral ventricles and other neurogenic regions. The basal ganglia in particular showed intense ELOVL4 labeling at this stage. In the postnatal brain, cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, midbrain, pons, and medulla all showed prominent ELOVL4 labeling, although ELOVL4 distribution was not uniform across all cells or subnuclei within these regions. In contrast, the basal ganglia showed little ELOVL4 labeling in the postnatal brain. Double labeling studies showed that ELOVL4 was primarily expressed by neurons, although presumptive oligodendrocytes located in white matter tracts also showed labeling. Little or no ELOVL4 labeling was present in astrocytes or radial glial cells. These findings suggest that ELOVL4 and its very long chain fatty acid products are important in many parts of the brain and that they are particularly associated with neuronal function. Specific roles for ELOVL4 and its products in oligodendrocytes and myelin and in cellular proliferation, especially during development, are possible.

Claustrum of the short-tailed fruit bat, Carollia perspicillata: Alignment of cellular orientation and functional connectivity.

  • Orman R
  • J. Comp. Neurol.
  • 2017 Apr 15

Literature context: try # and RRID:AB_177621). In each


The claustrum is a gray-matter structure that underlies neocortex and reciprocates connections with cortical and subcortical targets. In lower mammals, the claustrum is directly adjacent to neocortex, making the definition of claustral boundaries challenging. Latexin, an endogenous inhibitor of metallocarboxypeptidases, localizes to claustral cells, enabling a clear delineation of claustrum. Given its proportionately large claustrum, we hypothesized that the short-tailed fruit bat, Carollia perspicillata, can be a useful model for claustral structure-function relations. We used latexin immunohistochemistry to identify claustral boundaries and intrinsic structure and multielectrode recordings from brain slices to explore intrinsic excitatory connectivity of the claustrum. Carollia's claustrum contains cells whose intrinsic connectivity and alignment permit the generation of spontaneous, synchronous population events and mirror their pattern of spread in disinhibited brain slices over millimeters. Carollia shows cellular alignment and spontaneous population-activity spread along both horizontal and dorsoventral axes. Carollia claustrum possesses intrinsic excitatory connectivity sufficient to: 1) generate single, spontaneous, synchronized burst discharges, 2) support activity spread along axes where claustral cells are aligned, and 3), because of multiple axes for cell alignment, support activity spread along both rostrocaudal and dorsoventral axes. The smaller event sizes in bat claustrum compared with rat claustrum are consistent with events occurring in population subsets rather than the full claustral cell population. The overall size of claustrum, its pronounced vascularity, and its more complex intrinsic connectivity than rat suggest that the bat is an animal model for claustral structure and function that will permit unique access to claustrum's processing capabilities. J. Comp. Neurol. 525:1459-1474, 2017. © 2016 Wiley Periodicals, Inc.

An Intrinsic Epigenetic Barrier for Functional Axon Regeneration.

  • Weng YL
  • Neuron
  • 2017 Apr 19

Literature context: MAB377B; RRID:AB_177621 Rabbit ant


Mature neurons in the adult peripheral nervous system can effectively switch from a dormant state with little axonal growth to robust axon regeneration upon injury. The mechanisms by which injury unlocks mature neurons' intrinsic axonal growth competence are not well understood. Here, we show that peripheral sciatic nerve lesion in adult mice leads to elevated levels of Tet3 and 5-hydroxylmethylcytosine in dorsal root ganglion (DRG) neurons. Functionally, Tet3 is required for robust axon regeneration of DRG neurons and behavioral recovery. Mechanistically, peripheral nerve injury induces DNA demethylation and upregulation of multiple regeneration-associated genes in a Tet3- and thymine DNA glycosylase-dependent fashion in DRG neurons. In addition, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult CNS is attenuated upon Tet1 knockdown. Together, our study suggests an epigenetic barrier that can be removed by active DNA demethylation to permit axon regeneration in the adult mammalian nervous system.

Funding information:
  • NIGMS NIH HHS - T32 GM007814()

Synaptic Activity Drives a Genomic Program That Promotes a Neuronal Warburg Effect.

  • Bas-Orth C
  • J. Biol. Chem.
  • 2017 Mar 31

Literature context: V1519148, RRID:AB_177621, 1:200) in


Synaptic activity drives changes in gene expression to promote long lasting adaptations of neuronal structure and function. One example of such an adaptive response is the buildup of acquired neuroprotection, a synaptic activity- and gene transcription-mediated increase in the resistance of neurons against harmful conditions. A hallmark of acquired neuroprotection is the stabilization of mitochondrial structure and function. We therefore re-examined previously identified sets of synaptic activity-regulated genes to identify genes that are directly linked to mitochondrial function. In mouse and rat primary hippocampal cultures, synaptic activity caused an up-regulation of glycolytic genes and a concomitant down-regulation of genes required for oxidative phosphorylation, mitochondrial biogenesis, and maintenance. Changes in metabolic gene expression were induced by action potential bursting, but not by glutamate bath application activating extrasynaptic NMDA receptors. The specific and coordinate pattern of gene expression changes suggested that synaptic activity promotes a shift of neuronal energy metabolism from oxidative phosphorylation toward aerobic glycolysis, also known as the Warburg effect. The ability of neurons to up-regulate glycolysis has, however, been debated. We therefore used FACS sorting to show that, in mixed neuron glia co-cultures, activity-dependent regulation of metabolic gene expression occurred in neurons. Changes in gene expression were accompanied by changes in the phosphorylation-dependent regulation of the key metabolic enzyme, pyruvate dehydrogenase. Finally, increased synaptic activity caused an increase in the ratio of l-lactate production to oxygen consumption in primary hippocampal cultures. Based on these data we suggest the existence of a synaptic activity-mediated neuronal Warburg effect that may promote mitochondrial homeostasis and neuroprotection.

Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106.

  • Celona B
  • Elife
  • 2017 Jan 10

Literature context: , MAB377; RRID:AB_177621), chicken


Expanded GGGGCC repeats in the first intron of the C9orf72 gene represent the most common cause of familial amyotrophic lateral sclerosis (ALS), but the mechanisms underlying repeat-induced disease remain incompletely resolved. One proposed gain-of-function mechanism is that repeat-containing RNA forms aggregates that sequester RNA binding proteins, leading to altered RNA metabolism in motor neurons. Here, we identify the zinc finger protein Zfp106 as a specific GGGGCC RNA repeat-binding protein, and using affinity purification-mass spectrometry, we show that Zfp106 interacts with multiple other RNA binding proteins, including the ALS-associated factors TDP-43 and FUS. We also show that Zfp106 knockout mice develop severe motor neuron degeneration, which can be suppressed by transgenic restoration of Zfp106 specifically in motor neurons. Finally, we show that Zfp106 potently suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Thus, these studies identify Zfp106 as an RNA binding protein with important implications for ALS.

Funding information:
  • BLRD VA - I01 BX001108()
  • NHLBI NIH HHS - P01 HL089707()
  • NHLBI NIH HHS - R01 HL064658()
  • NIA NIH HHS - P01 AG019724()
  • NIA NIH HHS - P50 AG023501()
  • NINDS NIH HHS - R01 NS098516()
  • RRD VA - I01 RX002133()

MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders.

  • Harrington AJ
  • Elife
  • 2016 Oct 25

Literature context: illipore; RRID:AB_177621) or anti-M


Numerous genetic variants associated with MEF2C are linked to autism, intellectual disability (ID) and schizophrenia (SCZ) - a heterogeneous collection of neurodevelopmental disorders with unclear pathophysiology. MEF2C is highly expressed in developing cortical excitatory neurons, but its role in their development remains unclear. We show here that conditional embryonic deletion of Mef2c in cortical and hippocampal excitatory neurons (Emx1-lineage) produces a dramatic reduction in cortical network activity in vivo, due in part to a dramatic increase in inhibitory and a decrease in excitatory synaptic transmission. In addition, we find that MEF2C regulates E/I synapse density predominantly as a cell-autonomous, transcriptional repressor. Analysis of differential gene expression in Mef2c mutant cortex identified a significant overlap with numerous synapse- and autism-linked genes, and the Mef2c mutant mice displayed numerous behaviors reminiscent of autism, ID and SCZ, suggesting that perturbing MEF2C function in neocortex can produce autistic- and ID-like behaviors in mice.

Funding information:
  • NIGMS NIH HHS - R01GM080477(United States)

Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear.

  • Zhu XN
  • J. Neurosci.
  • 2016 Sep 28

Literature context: #MAB377B; RRID:AB_177621), mouse an


The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT: Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain.

Soluble Conformers of Aβ and Tau Alter Selective Proteins Governing Axonal Transport.

  • Sherman MA
  • J. Neurosci.
  • 2016 Sep 14

Literature context: #MAB377B, RRID:AB_177621), anti-MAP


Despite the demonstration that amyloid-β (Aβ) can trigger increased tau phosphorylation and neurofibrillary tangle (NFT) formation in vivo, the molecular link associating Aβ and tau pathologies remains ill defined. Here, we observed that exposure of cultured primary neurons to Aβ trimers isolated from brain tissue of subjects with Alzheimer's disease led to a specific conformational change of tau detected by the antibody Alz50. A similar association was supported by postmortem human brain analyses. To study the role of Aβ trimers in vivo, we created a novel bigenic Tg-Aβ+Tau mouse line by crossing Tg2576 (Tg-Aβ) and rTg4510 (Tg-Tau) mice. Before neurodegeneration and amyloidosis, apparent Aβ trimers were increased by ∼2-fold in 3-month-old Tg-Aβ and Tg-Aβ+Tau mice compared with younger mice, whereas soluble monomeric Aβ levels were unchanged. Under these conditions, the expression of soluble Alz50-tau conformers rose by ∼2.2-fold in the forebrains of Tg-Aβ+Tau mice compared with nontransgenic littermates. In parallel, APP accumulated intracellularly, suggestive of a putative dysfunction of anterograde axonal transport. We found that the protein abundance of the kinesin-1 light chain (KLC1) was reduced selectively in vivo and in vitro when soluble Aβ trimers/Alz50-tau were present. Importantly, the reduction in KLC1 was prevented by the intraneuronal delivery of Alz50 antibodies. Collectively, our findings reveal that specific soluble conformers of Aβ and tau cooperatively disrupt axonal transport independently from plaques and tangles. Finally, these results suggest that not all endogenous Aβ oligomers trigger the same deleterious changes and that the role of each assembly should be considered separately. SIGNIFICANCE STATEMENT: The mechanistic link between amyloid-β (Aβ) and tau, the two major proteins composing the neuropathological lesions detected in brain tissue of Alzheimer's disease subjects, remains unclear. Here, we report that the trimeric Aβ species induce a pathological modification of tau in cultured neurons and in bigenic mice expressing Aβ and human tau. This linkage was also observed in postmortem brain tissue from subjects with mild cognitive impairment, when Aβ trimers are abundant. Further, this modification of tau was associated with the intracellular accumulation of the precursor protein of Aβ, APP, as a result of the selective decrease in kinesin light chain 1 expression. Our findings suggest that Aβ trimers might cause axonal transport deficits in AD.

Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors.

  • Papale A
  • Elife
  • 2016 Aug 24

Literature context: MAB377B, RRID:AB_177621). Sections


Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction.

Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

  • Siembab VC
  • J. Comp. Neurol.
  • 2016 Jun 15

Literature context: MAB377B; RRID:AB_2314891) raised ag


Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.

Funding information:
  • Intramural FDA HHS - FD999999(United States)

Expression Analysis of CB2-GFP BAC Transgenic Mice.

  • Schmöle AC
  • PLoS ONE
  • 2015 Sep 26

Literature context: , GFP (AB_305643) 1:1000, NeuN (AB_177621) 1:200, GFAP (AB_305808) 1:500,


The endocannabinoid system (ECS) is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2). As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg) to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

Funding information:
  • NCRR NIH HHS - P40-RR17072(United States)
  • NIAAA NIH HHS - R01 AA017413(United States)

Retinal projections in the short-tailed fruit bat, Carollia perspicillata, as studied using the axonal transport of cholera toxin B subunit: Comparison with mouse.

  • Scalia F
  • J. Comp. Neurol.
  • 2015 Aug 15

Literature context: . MAB377B RRID:AB_177621) at diluti


To provide a modern description of the Chiropteran visual system, the subcortical retinal projections were studied in the short-tailed fruit bat, Carollia perspicillata, using the anterograde transport of eye-injected cholera toxin B subunit, supplemented by the silver-impregnation of anterograde degeneration following eye removal, and compared with the retinal projections of the mouse. The retinal projections were heavily labeled by the transported toxin in both species. Almost all components of the murine retinal projection are present in Carollia in varying degrees of prominence and laterality. The projections: to the superior colliculus, accessory optic nuclei, and nucleus of the optic tract are predominantly or exclusively contralateral; to the dorsal lateral geniculate nucleus and posterior pretectal nucleus are predominantly contralateral; to the ventral lateral geniculate nucleus, intergeniculate leaflet, and olivary pretectal nucleus have a substantial ipsilateral component; and to the suprachiasmatic nucleus are symmetrically bilateral. The retinal projection in Carollia is surprisingly reduced at the anterior end of the dorsal lateral geniculate and superior colliculus, suggestive of a paucity of the relevant ganglion cells in the ventrotemporal retina. In the superior colliculus, in which the superficial gray layer is very thin, the projection is patchy in places where the layer is locally absent. Except for a posteriorly located lateral terminal nucleus, the other accessory optic nuclei are diminutive in Carollia, as is the nucleus of the optic tract. In both species the cholera toxin labeled sparse groups of apparently terminating axons in numerous regions not listed above. A question of their significance is discussed.

Sodium channel β1 subunit localizes to axon initial segments of excitatory and inhibitory neurons and shows regional heterogeneity in mouse brain.

  • Wimmer VC
  • J. Comp. Neurol.
  • 2015 Apr 1

Literature context: Millipore cat. no. MAB377B RRID:AB_177621 (clone A60, lot LV1634819)1:500


The β1 subunit of voltage-gated sodium channels, Nav β1, plays multiple roles in neurons spanning electrophysiological modulation of sodium channel α subunits to cell adhesion and neurite outgrowth. This study used immunohistochemistry to investigate Nav β1 subneuronal and regional expression. Nav β1 was enriched at axon initial segments (AIS) and nodes of Ranvier. Nav β1 expression at the AIS was detected throughout the brain, predominantly in the hippocampus, cortex, and cerebellum. Despite expression of Nav β1 in both excitatory and inhibitory AIS, it displayed a marked and fine-grained heterogeneity of expression. Such heterogeneity could have important implications for the tuning of single neuronal and regional excitability, especially in view of the fact that Nav β1 coexpressed with Nav 1.1, Nav 1.2, and Nav 1.6 subunits. The disruption of Nav β1 AIS expression by a human epilepsy-causing C121W genetic mutation in Nav β1 was also investigated using a mouse model. AIS expression of Nav β1 was reduced by approximately 50% in mice heterozygous for the C121W mutation and was abolished in homozygotes, suggesting that loss of Nav α subunit modulation by Nav β1 contributes to the mechanism of epileptogenesis in these animals as well as in patients.

The medial amygdala-medullary PrRP-synthesizing neuron pathway mediates neuroendocrine responses to contextual conditioned fear in male rodents.

  • Yoshida M
  • Endocrinology
  • 2014 Aug 19

Literature context:


Fear responses play evolutionarily beneficial roles, although excessive fear memory can induce inappropriate fear expression observed in posttraumatic stress disorder, panic disorder, and phobia. To understand the neural machineries that underlie these disorders, it is important to clarify the neural pathways of fear responses. Contextual conditioned fear induces freezing behavior and neuroendocrine responses. Considerable evidence indicates that the central amygdala plays an essential role in expression of freezing behavior after contextual conditioned fear. On the other hand, mechanisms of neuroendocrine responses remain to be clarified. The medial amygdala (MeA), which is activated after contextual conditioned fear, was lesioned bilaterally by infusion of N-methyl-d-aspartate after training of fear conditioning. Plasma oxytocin, ACTH, and prolactin concentrations were significantly increased after contextual conditioned fear in sham-lesioned rats. In MeA-lesioned rats, these neuroendocrine responses but not freezing behavior were significantly impaired compared with those in sham-lesioned rats. In contrast, the magnitudes of neuroendocrine responses after exposure to novel environmental stimuli were not significantly different in MeA-lesioned rats and sham-lesioned rats. Contextual conditioned fear activated prolactin-releasing peptide (PrRP)-synthesizing neurons in the medulla oblongata. In MeA-lesioned rats, the percentage of PrRP-synthesizing neurons activated after contextual conditioned fear was significantly decreased. Furthermore, neuroendocrine responses after contextual conditioned fear disappeared in PrRP-deficient mice. Our findings suggest that the MeA-medullary PrRP-synthesizing neuron pathway plays an important role in neuroendocrine responses to contextual conditioned fear.

Funding information:
  • NICHD NIH HHS - Z01-HD008776(United States)
  • NIGMS NIH HHS - P20 GM103432(United States)

NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport.

  • Jouroukhin Y
  • Neurobiol. Dis.
  • 2013 Aug 5

Literature context:


NAP (davunetide) is a novel neuroprotective compound with mechanism of action that appears to involve microtubule (MT) stabilization and repair. To evaluate, for the first time, the impact of NAP on axonal transport in vivo and to translate it to neuroprotection in a severe neurodegeneration, the SOD1-G93A mouse model for amyotrophic lateral sclerosis (ALS) was used. Manganese-enhanced magnetic resonance imaging (MRI), estimating axonal transport rates, revealed a significant reduction of the anterograde axonal transport in the ALS mice compared to healthy control mice. Acute NAP treatment normalized axonal transport rates in these ALS mice. Tau hyperphosphorylation, associated with MT dysfunction and defective axonal transport, was discovered in the brains of the ALS mice and was significantly reduced by chronic NAP treatment. Furthermore, in healthy wild type (WT) mice, NAP reversed axonal transport disruption by colchicine, suggesting drug-dependent protection against axonal transport impairment through stabilization of the neuronal MT network. Histochemical analysis showed that chronic NAP treatment significantly protected spinal cord motor neurons against ALS-like pathology. Sequential MRI measurements, correlating brain structure with ALS disease progression, revealed a significant damage to the ventral tegmental area (VTA), indicative of impairments to the dopaminergic pathways relative to healthy controls. Chronic daily NAP treatment of the SOD1-G93A mice, initiated close to disease onset, delayed degeneration of the trigeminal, facial and hypoglossal motor nuclei as was significantly apparent at days 90-100 and further protected the VTA throughout life. Importantly, protection of the VTA was significantly correlated with longevity and overall, NAP treatment significantly prolonged life span in the ALS mice.

Funding information:
  • Intramural NIH HHS - (United States)

Food-entrained patterns in orexin cells reveal subregion differential activation.

  • Jiménez A
  • Brain Res.
  • 2013 Jun 4

Literature context:


Rats under a restricted feeding schedule develop food anticipatory activity 2-3h prior food access, characterized by increased arousal, foraging and exploratory behavior. This anticipatory behavior is not observed when rodents are allowed ad libitum food access and reappears for several cycles when food-entrained animals are fasted. Previously we reported that food entrainment also produces increased expression of c-Fos protein in the dorsomedial nucleus (DMH), in the perifornical area (PeF) and in the lateral hypothalamic area (LH) anticipating food intake. These hypothalamic structures contain abundant orexin (ORX) producing neurons and promote arousal, reward and metabolic balance, thus we explored the participation of the orexinergic system in food-entrainment by evaluating in food entrained rats (RF) the expression of c-Fos in ORX cells in anticipation, during and after food access, and in rats exhibiting persistent activation in fasting after interruption of the food-entrainment protocol (RF-Fast). Data were compared with ad libitum controls and with a 22-h fasted group. RF rats exhibited a food-entrained rhythm of c-Fos in ORX cells in the DMH, LH and PeF with highest levels at the time of meal delivery and after food ingestion. In RF-Fast rats the food-entrained pattern of ORX cells persisted in the PeF and LH and partially in the DMH, which in addition exhibited an earlier activation. We conclude that ORX cells in PeF and LH exhibit self sustained oscillations driven by food-entrainment, whereas the DMH may mediate arousal mechanisms that elicit anticipatory activity.

Funding information:
  • NIDA NIH HHS - R01-DA027305(United States)
  • NINDS NIH HHS - U24 NS051872(United States)

Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain.

  • Azevedo FA
  • J. Comp. Neurol.
  • 2009 Apr 10

Literature context:


The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells ("neurons") and 84.6 +/- 9.8 billion NeuN-negative ("nonneuronal") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain.

Funding information:
  • NCRR NIH HHS - P20 RR17670(United States)

Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum.

  • Yang Z
  • J. Comp. Neurol.
  • 2008 Nov 1

Literature context:


Ischemia-induced striatal neurogenesis from progenitors in the adjacent subventricular zone (SVZ) in young and adult rodents has been reported. However, it has not been established whether the precursors that reside in the SVZ retain the capacity to produce the full range of striatal neurons that has been destroyed. By using a neonatal rat model of hypoxic/ischemic brain damage, we show here that virtually all of the newly produced striatal neurons are calretinin (CR)-immunoreactive (+), but not DARPP-32(+), calbindin-D-28K(+), parvalbumin(+), somatostatin(+), or choline acetyltransferase(+). Retroviral fate-mapping studies confirm that these newly born CR(+) neurons are indeed descendants of the SVZ. Our studies indicate that, although the postnatal SVZ has the capacity to produce a range of neurons, only a subset of this repertoire is manifested in the brain after injury.