Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Anti-Glial Fibrillary Acidic Protein antibody


Antibody ID


Target Antigen

Glial Fibrillary Acidic Protein porcine, h, m, r, b, po

Proper Citation

(Millipore Cat# AB5541, RRID:AB_177521)


polyclonal antibody


seller recommendations: IC, IH, IH(P), WB; Western Blot; Immunohistochemistry; Immunocytochemistry

Host Organism

chicken, bird



Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement.

  • Adamsky A
  • Cell
  • 2018 Jun 28

Literature context: nti-GFAP Millipore Cat#AB_5541; RRID:AB_177521 Rabbit anti-Iba1 Wako Cat#019-1


Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.

Funding information:
  • Canadian Institutes of Health Research - DP1 DA028871(Canada)

Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury.

  • Dias DO
  • Cell
  • 2018 Mar 22

Literature context: 5541; RRID:AB_177521 Guinea pig anti GFAP Synaptic S


CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury.

Funding information:
  • Intramural NIH HHS - Z01 DE000698-10(United States)

Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer's Disease Models.

  • Lee CYD
  • Neuron
  • 2018 Mar 7

Literature context: lipore Cat# AB_5541; RRID:AB_177521 Rabbit polyclonal anti-Iba1 Wak


Variants of TREM2 are associated with Alzheimer's disease (AD). To study whether increasing TREM2 gene dosage could modify the disease pathogenesis, we developed BAC transgenic mice expressing human TREM2 (BAC-TREM2) in microglia. We found that elevated TREM2 expression reduced amyloid burden in the 5xFAD mouse model. Transcriptomic profiling demonstrated that increasing TREM2 levels conferred a rescuing effect, which includes dampening the expression of multiple disease-associated microglial genes and augmenting downregulated neuronal genes. Interestingly, 5xFAD/BAC-TREM2 mice showed further upregulation of several reactive microglial genes linked to phagocytosis and negative regulation of immune cell activation. Moreover, these mice showed enhanced process ramification and phagocytic marker expression in plaque-associated microglia and reduced neuritic dystrophy. Finally, elevated TREM2 gene dosage led to improved memory performance in AD models. In summary, our study shows that a genomic transgene-driven increase in TREM2 expression reprograms microglia responsivity and ameliorates neuropathological and behavioral deficits in AD mouse models.

Funding information:
  • NCI NIH HHS - CA-71514(United States)
  • NIA NIH HHS - R01 AG021173()
  • NIA NIH HHS - R01 AG038710()
  • NIA NIH HHS - R01 AG044420()
  • NIA NIH HHS - R21 AG048519()
  • NIA NIH HHS - RF1 AG056114()
  • NIA NIH HHS - RF1 AG056130()
  • NIMH NIH HHS - U01 MH106008()
  • NINDS NIH HHS - R01 NS030549()
  • NINDS NIH HHS - R01 NS046673()
  • NINDS NIH HHS - R01 NS074312()
  • NINDS NIH HHS - R01 NS084298()

Mixed Neurodevelopmental and Neurodegenerative Pathology in Nhe6-Null Mouse Model of Christianson Syndrome.

  • Xu M
  • eNeuro
  • 2018 Jan 20

Literature context: ion, chicken, Millipore AB_5541 RRID:AB_177521), and/or cluster of differentia


Christianson syndrome (CS) is an X-linked disorder resulting from loss-of-function mutations in SLC9A6, which encodes the endosomal Na+/H+ exchanger 6 (NHE6). Symptoms include early developmental delay, seizures, intellectual disability, nonverbal status, autistic features, postnatal microcephaly, and progressive ataxia. Neuronal development is impaired in CS, involving defects in neuronal arborization and synaptogenesis, likely underlying diminished brain growth postnatally. In addition to neurodevelopmental defects, some reports have supported neurodegenerative pathology in CS with age. The objective of this study was to determine the nature of progressive changes in the postnatal brain in Nhe6-null mice. We examined the trajectories of brain growth and atrophy in mutant mice from birth until very old age (2 yr). We report trajectories of volume changes in the mutant that likely reflect both brain undergrowth as well as tissue loss. Reductions in volume are first apparent at 2 mo, particularly in the cerebellum, which demonstrates progressive loss of Purkinje cells (PCs). We report PC loss in two distinct Nhe6-null mouse models. More widespread reductions in tissue volumes, namely, in the hippocampus, striatum, and cortex, become apparent after 2 mo, largely reflecting delays in growth with more limited tissue losses with aging. Also, we identify pronounced glial responses, particularly in major fiber tracts such as the corpus callosum, where the density of activated astrocytes and microglia are substantially increased. The prominence of the glial response in axonal tracts suggests a primary axonopathy. Importantly, therefore, our data support both neurodevelopmental and degenerative mechanisms in the pathobiology of CS.

Funding information:
  • NHLBI NIH HHS - HL67067(United States)
  • NIMH NIH HHS - R01 MH102418()
  • NIMH NIH HHS - R01 MH105442()
  • NIMH NIH HHS - R21 MH115392()
  • NIMH NIH HHS - R25 MH101076()
  • NINDS NIH HHS - F31 NS093880()

Altered expression of IGF-I system in neurons of the inflamed spinal cord during acute experimental autoimmune encephalomyelitis.

  • Parvaneh Tafreshi A
  • J. Comp. Neurol.
  • 2017 Oct 1

Literature context: ant protein. Millipore AB_5541, RRID:AB_177521 Chicken Polyclonal antibody, 1/


There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE.

Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury.

  • Gadani SP
  • J. Exp. Med.
  • 2017 Aug 14

Literature context: ce staining: chicken anti-GFAP (RRID:AB_5541; 1:1,000; EMD Millipore), rat a


The meningeal space is occupied by a diverse repertoire of immune cells. Central nervous system (CNS) injury elicits a rapid immune response that affects neuronal survival and recovery, but the role of meningeal inflammation remains poorly understood. Here, we describe type 2 innate lymphocytes (ILC2s) as a novel cell type resident in the healthy meninges that are activated after CNS injury. ILC2s are present throughout the naive mouse meninges, though are concentrated around the dural sinuses, and have a unique transcriptional profile. After spinal cord injury (SCI), meningeal ILC2s are activated in an IL-33-dependent manner, producing type 2 cytokines. Using RNAseq, we characterized the gene programs that underlie the ILC2 activation state. Finally, addition of wild-type lung-derived ILC2s into the meningeal space of IL-33R-/- animals partially improves recovery after SCI. These data characterize ILC2s as a novel meningeal cell type that responds to SCI and could lead to new therapeutic insights for neuroinflammatory conditions.

Funding information:
  • NINDS NIH HHS - R01 NS081026()

Persistent Expression of VCAM1 in Radial Glial Cells Is Required for the Embryonic Origin of Postnatal Neural Stem Cells.

  • Hu XL
  • Neuron
  • 2017 Jul 19

Literature context: AB_5541; RRID:AB_177521 Chicken po


During development, neural stem cells (NSCs) undergo transitions from neuroepithelial cells to radial glial cells (RGCs), and later, a subpopulation of slowly dividing RGCs gives rise to the quiescent adult NSCs that populate the ventricular-subventricular zone (V-SVZ). Here we show that VCAM1, a transmembrane protein previously found in quiescent adult NSCs, is expressed by a subpopulation of embryonic RGCs, in a temporal and region-specific manner. Loss of VCAM1 reduced the number of active embryonic RGCs by stimulating their premature neuronal differentiation while preventing quiescence in the slowly dividing RGCs. This in turn diminished the embryonic origin of postnatal NSCs, resulting in loss of adult NSCs and defective V-SVZ regeneration. VCAM1 affects the NSC fate by signaling through its intracellular domain to regulate β-catenin signaling in a context-dependent manner. Our findings provide new insight on how stem cells in the embryo are preserved to meet the need for growth and regeneration.

Funding information:
  • NINDS NIH HHS - R37 NS019904(United States)

Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe.

  • Hawkins VE
  • Elife
  • 2017 Apr 7

Literature context: protein (RRID:AB_177521) (Chemicon


Cerebral blood flow is highly sensitive to changes in CO2/H+ where an increase in CO2/H+ causes vasodilation and increased blood flow. Tissue CO2/H+ also functions as the main stimulus for breathing by activating chemosensitive neurons that control respiratory output. Considering that CO2/H+-induced vasodilation would accelerate removal of CO2/H+ and potentially counteract the drive to breathe, we hypothesize that chemosensitive brain regions have adapted a means of preventing vascular CO2/H+-reactivity. Here, we show in rat that purinergic signaling, possibly through P2Y2/4 receptors, in the retrotrapezoid nucleus (RTN) maintains arteriole tone during high CO2/H+ and disruption of this mechanism decreases the CO2ventilatory response. Our discovery that CO2/H+-dependent regulation of vascular tone in the RTN is the opposite to the rest of the cerebral vascular tree is novel and fundamentally important for understanding how regulation of vascular tone is tailored to support neural function and behavior, in this case the drive to breathe.

Funding information:
  • NHLBI NIH HHS - F32 HL126381()
  • NHLBI NIH HHS - P01 HL095488()
  • NHLBI NIH HHS - R01 HL104101()
  • NHLBI NIH HHS - R01 HL121706()
  • NHLBI NIH HHS - R01 HL131181()
  • NIDDK NIH HHS - R37 DK053832()

Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain.

  • Langlet F
  • J. Comp. Neurol.
  • 2013 Oct 15

Literature context:


Tanycytes are highly specialized ependymal cells that form a blood-cerebrospinal fluid (CSF) barrier at the level of the median eminence (ME), a circumventricular organ (CVO) located in the tuberal region of the hypothalamus. This ependymal layer harbors well-organized tight junctions, a hallmark of central nervous system barriers that is lacking in the fenestrated portal vessels of the ME. The displacement of barrier properties from the vascular to the ventricular side allows the diffusion of blood-borne molecules into the parenchyma of the ME while tanycyte tight junctions control their diffusion into the CSF, thus maintaining brain homeostasis. In the present work, we combined immunohistochemical and permeability studies to investigate the presence of tanycyte barriers along the ventricular walls of other brain CVOs. Our data indicate that, unlike cuboidal ependymal cells, ependymal cells bordering the CVOs possess long processes that project into the parenchyma of the CVOs to reach the fenestrated capillary network. Remarkably, these tanycyte-like cells display well-organized tight junctions around their cell bodies. Consistent with these observations, permeability studies show that this ependymal layer acts as a diffusion barrier. Together, our results suggest that tanycytes are a characteristic feature of all CVOs and yield potential new insights into their involvement in regulating the exchange between the blood, the brain, and the CSF within these "brain windows."

Funding information:
  • NINDS NIH HHS - R01 NS039600(United States)

Age increase of estrogen receptor-α (ERα) in cortical astrocytes impairs neurotrophic support in male and female rats.

  • Arimoto JM
  • Endocrinology
  • 2013 Jun 20

Literature context:


Rodent models show decreased neuronal responses to estradiol (E2) during aging (E2-desensitization) in association with reduced neuronal estrogen receptor (ER)-α, but little is known about age changes of E2-dependent astrocytic neurotrophic support. Because elevated expression of astrocyte glial fibrillary acidic protein (GFAP) is associated with impaired neurotrophic activity and because the GFAP promoter responds to ERα, we investigated the role of astrocytic ERα and ERβ in impaired astrocyte neurotrophic activity during aging. In vivo and in vitro, ERα was increased greater than 50% with age in astrocytes from the cerebral cortex of male rats (24 vs 3 months), whereas ERβ did not change. In astrocytes from 3-month-old males, experimentally increasing the ERα to ERβ ratio induced the aging phenotype of elevated GFAP and impaired E2-dependent neurite outgrowth. In 24-month-old male astrocytes, lowering ERα reversed the age elevation of GFAP and partially restored E2-dependent neurite outgrowth. Mixed glia (astrocytes to microglia, 3:1) of both sexes also showed these age changes. In a model of perimenopause, mixed glia from 9- to 15-month rats showed E2 desensitization: 9-month regular cyclers retained young-like ERα to ERβ ratios and neurotrophic activity, whereas 9-month noncyclers had elevated ERα and GFAP but low E2-dependent neurotrophic activity. In vivo, ERα levels in cortical astrocytes were also elevated. The persisting effects of ovarian acyclicity in vitro are hypothesized to arise from steroidal perturbations during ovarian senescence. These findings suggest that increased astrocyte ERα expression during aging contributes to the E2 desensitization of the neuronal responses in both sexes.

Funding information:
  • NIDCD NIH HHS - R01 DC014728(United States)

The astrocytic lineage marker calmodulin-regulated spectrin-associated protein 1 (Camsap1): phenotypic heterogeneity of newly born Camsap1-expressing cells in injured mouse brain.

  • Yoshioka N
  • J. Comp. Neurol.
  • 2012 Apr 15

Literature context:


Calmodulin-regulated spectrin-associated protein 1 (Camsap1) has been recognized as a new marker for astrocytic lineage cells and is expressed on mature astrocytes in the adult brain (Yamamoto et al. [2009] J. Neurosci. Res. 87:503–513). In the present study, we found that newly born Camsap1-expressing cells exhibited regional heterogeneity in an early phase after stab injury of the mouse brain. In the surrounding area of the lesion site, Camsap1 was expressed on quiescent astrocytes. At 3 days after injury, Camsap1 immunoreactivity was upregulated on glial fibrillary acidic protein-immunoreactive (GFAP-ir) astrocytes. Some of these astrocytes incorporated bromodeoxyuridine (BrdU) together with re-expression of the embryonic cytoskeleton protein nestin. In the neighboring region of the lesion cavity, Camsap1 was expressed on GFAP-negative cells. At 3 days after injury, GFAP-ir astrocytes were absent around the lesion cavity. At this stage, NG2-ir cells immunopositive for Camsap1 and immunonegative for GFAP were distributed in border of the lesion cavity. By 10 days, Camsap1 immunoreactivity was exclusively detected on GFAP-ir reactive astrocytes devoid of NG2 immunoreactivity. BrdU pulse-chase labeling assay suggested the differentiation of Camsap1+/NG2+ cells into Camsap1+/GFAP+ astrocytes. In the subependymal zone of the lateral ventricle, Camsap1-ir cells increased after injury. Camsap1 immunoreactivity was distributed on ependymal and subependymal cells bearing various astrocyte markers, and BrdU incorporation was enhanced on such Camsap1-ir cells after injury. These results suggest that newly born reactive astrocytes are derived from heterogeneous Camsap1-expressing cells in the injured brain.

Funding information:
  • NIDDK NIH HHS - R01 DK084352(United States)

Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development.

  • Bloch J
  • J. Comp. Neurol.
  • 2011 Mar 1

Literature context:


We have demonstrated that cortical cell autografts might be a useful therapy in two monkey models of neurological disease: motor cortex lesion and Parkinson's disease. However, the origin of the useful transplanted cells obtained from cortical biopsies is not clear. In this report we describe the expression of doublecortin (DCX) in these cells based on reverse-transcription polymerase chain reaction (RT-PCR) and immunodetection in the adult primate cortex and cell cultures. The results showed that DCX-positive cells were present in the whole primate cerebral cortex and also expressed glial and/or neuronal markers such as glial fibrillary protein (GFAP) or neuronal nuclei (NeuN). We also demonstrated that only DCX/GFAP positive cells were able to proliferate and originate progenitor cells in vitro. We hypothesize that these DCX-positive cells in vivo have a role in cortical plasticity and brain reaction to injury. Moreover, in vitro these DCX-positive cells have the potential to reacquire progenitor characteristics that confirm their potential for brain repair.

Funding information:
  • Wellcome Trust - 075491/Z/04(United Kingdom)

Suppression of fibrotic scar formation promotes axonal regeneration without disturbing blood-brain barrier repair and withdrawal of leukocytes after traumatic brain injury.

  • Yoshioka N
  • J. Comp. Neurol.
  • 2010 Sep 15

Literature context:


The fibrotic scar containing type IV collagen (Col IV) formed in a lesion site is considered as an obstacle to axonal regeneration, because intracerebral injection of 2,2'-dipyridyl (DPY), an inhibitor of Col IV triple-helix formation, suppresses fibrotic scar formation in the lesion site and promotes axonal regeneration. To determine the role of the fibrotic scar on the healing process of injured central nervous system (CNS), the restoration of blood-brain barrier (BBB) and withdrawal of inflammatory leukocytes were examined in mice subjected to unilateral transection of the nigrostriatal dopaminergic pathway and intracerebral DPY injection. At 5 days after injury, destruction of BBB represented by leakage of Evans blue (EB) and widespread infiltration of CD45-immunoreactive leukocytes was observed around the lesion site, whereas reactive astrocytes increased surrounding the BBB-destroyed area. By 2 weeks after injury, the region of EB leakage and the diffusion of leukocytes were restricted to the inside of the fibrotic scar, and reactive astrocytes gathered around the fibrotic scar. In the DPY-treated lesion site, formation of the fibrotic scar was suppressed (84% decrease in Col IV-deposited area), reactive astrocytes occupied the lesion center, and areas of both EB leakage and leukocyte infiltration decreased by 86%. DPY treatment increased the number of regenerated dopaminergic axons by 2.53-fold. These results indicate that suppression of fibrotic scar formation does not disturb the healing process in damaged CNS, and suggest that this strategy is a reliable tool to promote axonal regeneration after traumatic injury in the CNS.

Funding information:
  • NHGRI NIH HHS - R01 HG004744-01(United States)

Species differences in the expression of Ahi1, a protein implicated in the neurodevelopmental disorder Joubert syndrome, with preferential accumulation to stigmoid bodies.

  • Doering JE
  • J. Comp. Neurol.
  • 2008 Nov 10

Literature context:


Joubert syndrome (JBTS) is an autosomal recessive disorder characterized by cerebellum and brainstem malformations. Individuals with JBTS have abnormal breathing and eye movements, ataxia, hypotonia, and cognitive difficulty, and they display mirror movements. Mutations in the Abelson-helper integration site-1 gene (AHI1) cause JBTS in humans, suggesting that AHI1 is required for hindbrain development; however AHI1 may also be required for neuronal function. Support for this idea comes from studies demonstrating that the AHI1 locus is associated with schizophrenia. To gain further insight into the function of AHI1 in both the developing and mature central nervous system, we determined the spatial and temporal expression patterns of the gene products of AHI1 orthologs throughout development, in human, mouse, and zebrafish. Murine Ahi1 was distributed throughout the cytoplasm, dendrites, and axons of neurons, but was absent in glial cells. Ahi1 expression in the mouse brain was observed as early as embryonic day 10.5 and persisted into adulthood, with peak expression during the first postnatal week. Murine Ahi1 was observed in neurons of the hindbrain, midbrain, and ventral forebrain. Generally, the AHI1/Ahi1/ahi1 orthologs had a conserved distribution pattern in human, mouse, and zebrafish, but mouse Ahi1 was not present in the developing and mature cerebellum. Ahi1 was also observed consistently in the stigmoid body, a poorly characterized cytoplasmic organelle found in neurons. Overall, these results suggest roles for AHI1 in neurodevelopmental processes that underlie most of the neuroanatomical defects in JBTS, and perhaps in neuronal functions that contribute to schizophrenia.