Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Rabbit Anti-GAPDH Monoclonal Antibody, HRP Conjugated, Clone 14C10


Antibody ID


Target Antigen

GAPDH human, mouse, rat, simian, human, mouse, rat, monkey

Proper Citation

(Cell Signaling Technology Cat# 3683, RRID:AB_1642205)


monoclonal antibody


Applications: W. Consolidation on 9/2016: AB_10693600.

Clone ID

Clone 14C10

Host Organism



Cell Signaling Technology

Cat Num

3683 also 3683S

ACC2 Deletion Enhances IMCL Reduction along with Acetyl-CoA Metabolism and Improves Insulin Sensitivity in Male Mice.

  • Takagi H
  • Endocrinology
  • 2018 Jun 20

Literature context: 83S; Cell Signaling Technology; RRID:AB_1642205). Protein signals were detected


Intramyocellular lipid (IMCL) accumulation in skeletal muscle greatly contributes to lipid-induced insulin resistance. Since acetyl-CoA carboxylase 2 (ACC2) negatively modulates mitochondrial fatty acid oxidation (FAO) in skeletal muscle, ACC2 inhibition is expected to reduce IMCL via elevation of FAO and to attenuate insulin resistance. However, the concept of substrate competition suggests that enhanced FAO results in reduced glucose utilization because of an excessive acetyl-CoA pool in mitochondria. To identify how ACC2-regulated FAO affects IMCL accumulation and glucose metabolism, we generated ACC2 knockout (ACC2-/-) mice and investigated skeletal muscle metabolites associated with fatty acid and glucose metabolism, as well as whole-body glucose metabolism. ACC2-/- mice displayed higher capacity of glucose disposal at the whole-body levels. In skeletal muscle, ACC2-/- mice exhibited enhanced acylcarnitine formation and reduced IMCL levels without alteration in glycolytic intermediate levels. Notably, these changes were accompanied by decreased acetyl-CoA content and enhanced mitochondrial pathways related to acetyl-CoA metabolism, such as the acetylcarnitine production and tricarboxylic acid cycle. Furthermore, ACC2-/- mice exhibited lower levels of IMCL and acetyl-CoA even under HFD conditions and showed protection against HFD-induced insulin resistance. Our findings suggest that ACC2 deletion leads to IMCL reduction without suppressing glucose utilization via an elevation in acetyl-CoA metabolism even under HFD conditions and offer new mechanistic insight into the therapeutic potential of ACC2 inhibition on insulin resistance.

Funding information:
  • PHS HHS - KG081694(United States)

Genetic Removal of eIF2α Kinase PERK in Mice Enables Hippocampal L-LTP Independent of mTORC1 Activity.

  • Zimmermann HR
  • J. Neurochem.
  • 2018 Jan 16

Literature context: Signaling Technology Cat# 3683, RRID:AB_1642205); p-CREB (Ser129 + S133) (1 : 1


Characterization of the molecular signaling pathways underlying protein synthesis-dependent forms of synaptic plasticity, such as late long-term potentiation (L-LTP), can provide insights not only into memory expression/maintenance under physiological conditions but also potential mechanisms associated with the pathogenesis of memory disorders. Here, we report in mice that L-LTP failure induced by the mammalian (mechanistic) target of rapamycin complex 1 (mTORC1) inhibitor rapamycin is reversed by brain-specific genetic deletion of PKR-like ER kinase, PERK (PERK KO), a kinase for eukaryotic initiation factor 2α (eIF2α). In contrast, genetic removal of general control non-derepressible-2, GCN2 (GCN2 KO), another eIF2α kinase, or treatment of hippocampal slices with the PERK inhibitor GSK2606414, does not rescue rapamycin-induced L-LTP failure, suggesting mechanisms independent of eIF2α phosphorylation. Moreover, we demonstrate that phosphorylation of eukaryotic elongation factor 2 (eEF2) is significantly decreased in PERK KO mice but unaltered in GCN2 KO mice or slices treated with the PERK inhibitor. Reduction of eEF2 phosphorylation results in increased general protein synthesis, and thus could contribute to the mTORC1-independent L-LTP in PERK KO mice. We further performed experiments on mutant mice with genetic removal of eEF2K (eEF2K KO), the only known kinase for eEF2, and found that L-LTP in eEF2K KO mice is insensitive to rapamycin. These data, for the first time, connect reduction of PERK activity with the regulation of translation elongation in enabling L-LTP independent of mTORC1. Thus, our findings indicate previously unrecognized levels of complexity in the regulation of protein synthesis-dependent synaptic plasticity. This article is protected by copyright. All rights reserved.

Funding information:
  • NIA NIH HHS - F31 AG054113()
  • NIA NIH HHS - K99 AG044469()
  • NIA NIH HHS - R00 AG044469()
  • NIA NIH HHS - R01 AG055581()
  • NIA NIH HHS - R01 AG056622()
  • NIGMS NIH HHS - T32 GM007739(United States)

Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Mediators of Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep.

  • Puttabyatappa M
  • Endocrinology
  • 2017 Sep 1

Literature context: 3 Rabbit; monoclonal WB 1:1K RRID:AB_1642205


Prenatal testosterone (T) excess in sheep leads to peripheral insulin resistance (IR), reduced adipocyte size, and tissue-specific changes, with liver and muscle but not adipose tissue being insulin resistant. To determine the basis for the tissue-specific differences in insulin sensitivity, we assessed changes in negative (inflammation, oxidative stress, and lipotoxicity) and positive mediators (adiponectin and antioxidants) of insulin sensitivity in the liver, muscle, and adipose tissues of control and prenatal T-treated sheep. Because T excess leads to maternal hyperinsulinemia, fetal hyperandrogenism, and functional hyperandrogenism and IR in their female offspring, prenatal and postnatal interventions with antiandrogen, flutamide, and the insulin sensitizer rosiglitazone were used to parse out the contribution of androgenic and metabolic pathways in programming and maintaining these defects. Results showed that (1) peripheral IR in prenatal T-treated female sheep is related to increases in triglycerides and 3-nitrotyrosine, which appear to override the increase in high-molecular-weight adiponectin; (2) liver IR is a function of the increase in oxidative stress (3-nitrotyrosine) and lipotoxicity; (3) muscle IR is related to lipotoxicity; and (4) the insulin-sensitive status of visceral adipose tissue appears to be a function of the increase in antioxidants that likely overrides the increase in proinflammatory cytokines, macrophages, and oxidative stress. Prenatal and postnatal intervention with either antiandrogen or insulin sensitizer had partial effects in preventing or ameliorating the prenatal T-induced changes in mediators of insulin sensitivity, suggesting that both pathways are critical for the programming and maintenance of the prenatal T-induced changes and point to potential involvement of estrogenic pathways.

Funding information:
  • NEI NIH HHS - R01EY024704(United States)
  • NICHD NIH HHS - P01 HD044232()

Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS.

  • Cardoso RC
  • Endocrinology
  • 2017 May 26

Literature context: 3683 Rabbit; monoclonal WB 1:1K AB 1642205 p-AKT  p-AKT (Thr308) (D25E6) Ce


Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype.

Funding information:
  • NIAMS NIH HHS - AR061933(United States)

Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult.

  • Larhammar M
  • Elife
  • 2017 Apr 25

Literature context: chnology, RRID:AB_1642205). Note tha


The PKR-like endoplasmic reticulum kinase (PERK) arm of the Integrated Stress Response (ISR) is implicated in neurodegenerative disease, although the regulators and consequences of PERK activation following neuronal injury are poorly understood. Here we show that PERK signaling is a component of the mouse MAP kinase neuronal stress response controlled by the Dual Leucine Zipper Kinase (DLK) and contributes to DLK-mediated neurodegeneration. We find that DLK-activating insults ranging from nerve injury to neurotrophin deprivation result in both c-Jun N-terminal Kinase (JNK) signaling and the PERK- and ISR-dependent upregulation of the Activating Transcription Factor 4 (ATF4). Disruption of PERK signaling delays neurodegeneration without reducing JNK signaling. Furthermore, DLK is both sufficient for PERK activation and necessary for engaging the ISR subsequent to JNK-mediated retrograde injury signaling. These findings identify DLK as a central regulator of not only JNK but also PERK stress signaling in neurons, with both pathways contributing to neurodegeneration.

YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-κB.

  • Schimmack G
  • Elife
  • 2017 Feb 28

Literature context: P (RRID:AB_1642205), IκBα (RR


The ubiquitin ligase TRAF6 is a key regulator of canonical IκB kinase (IKK)/NF-κB signaling in response to interleukin-1 (IL-1) stimulation. Here, we identified the deubiquitinating enzyme YOD1 (OTUD2) as a novel interactor of TRAF6 in human cells. YOD1 binds to the C-terminal TRAF homology domain of TRAF6 that also serves as the interaction surface for the adaptor p62/Sequestosome-1, which is required for IL-1 signaling to NF-κB. We show that YOD1 competes with p62 for TRAF6 association and abolishes the sequestration of TRAF6 to cytosolic p62 aggregates by a non-catalytic mechanism. YOD1 associates with TRAF6 in unstimulated cells but is released upon IL-1β stimulation, thereby facilitating TRAF6 auto-ubiquitination as well as NEMO/IKKγ substrate ubiquitination. Further, IL-1 triggered IKK/NF-κB signaling and induction of target genes is decreased by YOD1 overexpression and augmented after YOD1 depletion. Hence, our data define that YOD1 antagonizes TRAF6/p62-dependent IL-1 signaling to NF-κB.

Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice.

  • Yang CR
  • Endocrinology
  • 2016 Jan 31

Literature context:


Embryonic poly(A)-binding protein (EPAB) is the predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos before zygotic genome activation. EPAB is required for translational activation of maternally stored mRNAs in the oocyte and Epab(-/-) female mice are infertile due to impaired oocyte maturation, cumulus expansion, and ovulation. The aim of this study was to characterize the mechanism of follicular somatic cell dysfunction in Epab(-/-) mice. Using a coculture system of oocytectomized cumulus oophorus complexes (OOXs) with denuded oocytes, we found that when wild-type OOXs were cocultured with Epab(-/-) oocytes, or when Epab(-/-) OOXs were cocultured with WT oocytes, cumulus expansion failed to occur in response to epidermal growth factor (EGF). This finding suggests that oocytes and cumulus cells (CCs) from Epab(-/-) mice fail to send and receive the necessary signals required for cumulus expansion. The abnormalities in Epab(-/-) CCs are not due to lower expression of the oocyte-derived factors growth differentiation factor 9 or bone morphogenetic protein 15, because Epab(-/-) oocytes express these proteins at comparable levels with WT. Epab(-/-) granulosa cells (GCs) exhibit decreased levels of phosphorylated MEK1/2, ERK1/2, and p90 ribosomal S6 kinase in response to lutenizing hormone and EGF treatment, as well as decreased phosphorylation of the EGF receptor. In conclusion, EPAB, which is oocyte specific, is required for the ability of CCs and GCs to become responsive to LH and EGF signaling. These results emphasize the importance of oocyte-somatic communication for GC and CC function.

Funding information:
  • NINDS NIH HHS - R21 NS081467(United States)