Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Goat Anti-Rat IgG (H+L) Antibody, Alexa Fluor ?? 647 Conjugated


3D Culture Method for Alzheimer's Disease Modeling Reveals Interleukin-4 Rescues Aβ42-Induced Loss of Human Neural Stem Cell Plasticity.

  • Papadimitriou C
  • Dev. Cell
  • 2018 Jul 2

Literature context: Life Technologies Cat# A-21247; RRID:AB_141778 HRP-coupled secondary antibody


Neural stem cells (NSCs) constitute an endogenous reservoir for neurons that could potentially be harnessed for regenerative therapies in disease contexts such as neurodegeneration. However, in Alzheimer's disease (AD), NSCs lose plasticity and thus possible regenerative capacity. We investigate how NSCs lose their plasticity in AD by using starPEG-heparin-based hydrogels to establish a reductionist 3D cell-instructive neuro-microenvironment that promotes the proliferative and neurogenic ability of primary and induced human NSCs. We find that administration of AD-associated Amyloid-β42 causes classical neuropathology and hampers NSC plasticity by inducing kynurenic acid (KYNA) production. Interleukin-4 restores NSC proliferative and neurogenic ability by suppressing the KYNA-producing enzyme Kynurenine aminotransferase (KAT2), which is upregulated in APP/PS1dE9 mouse model of AD and in postmortem human AD brains. Thus, our culture system enables a reductionist investigation of regulation of human NSC plasticity for the identification of potential therapeutic targets for intervention in AD.

Funding information:
  • Howard Hughes Medical Institute - (United States)

A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain.

  • Davie K
  • Cell
  • 2018 Jun 9

Literature context:


The diversity of cell types and regulatory states in the brain, and how these change during aging, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting. Our data show high granularity and identify a wide range of cell types. Gene network analyses using SCENIC revealed regulatory heterogeneity linked to energy consumption. During aging, RNA content declines exponentially without affecting neuronal identity in old brains. This single-cell brain atlas covers nearly all cells in the normal brain and provides the tools to study cellular diversity alongside other Drosophila and mammalian single-cell datasets in our unique single-cell analysis platform: SCope (http://scope.aertslab.org). These results, together with SCope, allow comprehensive exploration of all transcriptional states of an entire aging brain.

Funding information:
  • Medical Research Council - G0600214(United Kingdom)

Dynamic Architecture of DNA Repair Complexes and the Synaptonemal Complex at Sites of Meiotic Recombination.

  • Woglar A
  • Cell
  • 2018 Jun 14

Literature context: d Molecular Probes Cat# A21247; RRID:AB_141778 Goat polyclonal anti-chicken Al


Meiotic double-strand breaks (DSBs) are generated and repaired in a highly regulated manner to ensure formation of crossovers (COs) while also enabling efficient non-CO repair to restore genome integrity. We use structured-illumination microscopy to investigate the dynamic architecture of DSB repair complexes at meiotic recombination sites in relationship to the synaptonemal complex (SC). DSBs resected at both ends are converted into inter-homolog repair intermediates harboring two populations of BLM helicase and RPA, flanking a single population of MutSγ. These intermediates accumulate until late pachytene, when repair proteins disappear from non-CO sites and CO-designated sites become enveloped by SC-central region proteins, acquire a second MutSγ population, and lose RPA. These and other data suggest that the SC may protect CO intermediates from being dismantled inappropriately and promote CO maturation by generating a transient CO-specific repair compartment, thereby enabling differential timing and outcome of repair at CO and non-CO sites.

Funding information:
  • NCI NIH HHS - P30 CA016672(United States)
  • NIGMS NIH HHS - R01 GM053804()
  • NIGMS NIH HHS - R01 GM067268()

Autophagy Regulates the Liver Clock and Glucose Metabolism by Degrading CRY1.

  • Toledo M
  • Cell Metab.
  • 2018 Jun 11

Literature context: Fisher Scientific Cat# A-21247, RRID:AB_141778 Bacterial and Virus Strains


The circadian clock coordinates behavioral and circadian cues with availability and utilization of nutrients. Proteasomal degradation of clock repressors, such as cryptochrome (CRY)1, maintains periodicity. Whether macroautophagy, a quality control pathway, degrades circadian proteins remains unknown. Here we show that circadian proteins BMAL1, CLOCK, REV-ERBα, and CRY1 are lysosomal targets, and that macroautophagy affects the circadian clock by selectively degrading CRY1. Autophagic degradation of CRY1, an inhibitor of gluconeogenesis, occurs in a diurnal window when rodents rely on gluconeogenesis, suggesting that CRY1 degradation is time-imprinted to maintenance of blood glucose. High-fat feeding accelerates autophagic CRY1 degradation and contributes to obesity-associated hyperglycemia. CRY1 contains several light chain 3 (LC3)-interacting region (LIR) motifs, which facilitate the interaction of cargo proteins with the autophagosome marker LC3. Using mutational analyses, we identified two distinct LIRs on CRY1 that exert circadian glycemic control by regulating CRY1 degradation, revealing LIRs as potential targets for controlling hyperglycemia.

Funding information:
  • NIDCD NIH HHS - T32DC006612(United States)

Follicular Helper T Cells are Essential for the Elimination of Plasmodium Infection.

  • Pérez-Mazliah D
  • EBioMedicine
  • 2018 Jun 18

Literature context: Probes Cat# A-21247 also A21247 RRID:AB_141778), goat anti-rabbit IgG alexa fl


CD4+ follicular helper T (Tfh) cells have been shown to be critical for the activation of germinal center (GC) B-cell responses. Similar to other infections, Plasmodium infection activates both GC as well as non-GC B cell responses. Here, we sought to explore whether Tfh cells and GC B cells are required to eliminate a Plasmodium infection. A CD4 T cell-targeted deletion of the gene that encodes Bcl6, the master transcription factor for the Tfh program, resulted in complete disruption of the Tfh response to Plasmodium chabaudi in C57BL/6 mice and consequent disruption of GC responses and IgG responses and the inability to eliminate the otherwise self-resolving chronic P. chabaudi infection. On the other hand, and contrary to previous observations in immunization and viral infection models, Signaling Lymphocyte Activation Molecule (SLAM)-Associated Protein (SAP)-deficient mice were able to activate Tfh cells, GC B cells, and IgG responses to the parasite. This study demonstrates the critical role for Tfh cells in controlling this systemic infection, and highlights differences in the signals required to activate GC B cell responses to this complex parasite compared with those of protein immunizations and viral infections. Therefore, these data are highly pertinent for designing malaria vaccines able to activate broadly protective B-cell responses.

Serotonergic Signaling Controls Input-Specific Synaptic Plasticity at Striatal Circuits.

  • Cavaccini A
  • Neuron
  • 2018 May 16

Literature context: RRID:AB_141778 Rabbit anti-RFP antibody AbCam


Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.

Funding information:
  • Wellcome Trust - (United Kingdom)

Phosphatidylinositol-5-Phosphate 4-Kinases Regulate Cellular Lipid Metabolism By Facilitating Autophagy.

  • Lundquist MR
  • Mol. Cell
  • 2018 May 3

Literature context: 47 Thermo Fisher Cat# A-21247, RRID:AB_141778 anti-LAMP1 Abcam Cat# ab25245,


While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.

Funding information:
  • NCI NIH HHS - R35 CA197588()
  • NCI NIH HHS - U54 CA210184()
  • NCRR NIH HHS - UL1RR024128(United States)
  • NIGMS NIH HHS - R01 GM041890()

Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens.

  • Pan J
  • Cell Syst
  • 2018 May 23

Literature context: 47 Thermo Fisher Cat#A-21247; RRID:AB_141778 Goat anti-Rabbit IgG Alexa Fluo


Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states.

Funding information:
  • NCI NIH HHS - U01 CA176058()
  • NIDDK NIH HHS - U24 DK 58768-01A1(United States)

CD157 Marks Tissue-Resident Endothelial Stem Cells with Homeostatic and Regenerative Properties.

  • Wakabayashi T
  • Cell Stem Cell
  • 2018 Mar 1

Literature context: :500) Thermo Fisher Cat#A21247; RRID:AB_141778 Goat anti-Rabbit IgG (H+L) Seco


The generation of new blood vessels via angiogenesis is critical for meeting tissue oxygen demands. A role for adult stem cells in this process remains unclear. Here, we identified CD157 (bst1, bone marrow stromal antigen 1) as a marker of tissue-resident vascular endothelial stem cells (VESCs) in large arteries and veins of numerous mouse organs. Single CD157+ VESCs form colonies in vitro and generate donor-derived portal vein, sinusoids, and central vein endothelial cells upon transplantation in the liver. In response to injury, VESCs expand and regenerate entire vasculature structures, supporting the existence of an endothelial hierarchy within blood vessels. Genetic lineage tracing revealed that VESCs maintain large vessels and sinusoids in the normal liver for more than a year, and transplantation of VESCs rescued bleeding phenotypes in a mouse model of hemophilia. Our findings show that tissue-resident VESCs display self-renewal capacity and that vascular regeneration potential exists in peripheral blood vessels.

Funding information:
  • NIGMS NIH HHS - R01 GM61712(United States)

Pericyte ALK5/TIMP3 Axis Contributes to Endothelial Morphogenesis in the Developing Brain.

  • Dave JM
  • Dev. Cell
  • 2018 Mar 26

Literature context: at# A21247; RRID:AB_141778 anti-rabbit Dylight 488 Vector


The murine embryonic blood-brain barrier (BBB) consists of endothelial cells (ECs), pericytes (PCs), and basement membrane. Although PCs are critical for inducing vascular stability, signaling pathways in PCs that regulate EC morphogenesis during BBB development remain unexplored. Herein, we find that murine embryos lacking the transforming growth factor β (TGF-β) receptor activin receptor-like kinase 5 (Alk5) in brain PCs (mutants) develop gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH). The germinal matrix (GM) is a highly vascularized structure rich in neuronal and glial precursors. We show that GM microvessels of mutants display abnormal dilation, reduced PC coverage, EC hyperproliferation, reduced basement membrane collagen, and enhanced perivascular matrix metalloproteinase activity. Furthermore, ALK5-depleted PCs downregulate tissue inhibitor of matrix metalloproteinase 3 (TIMP3), and TIMP3 administration to mutants improves endothelial morphogenesis and attenuates GMH-IVH. Overall, our findings reveal a key role for PC ALK5 in regulating brain endothelial morphogenesis and a substantial therapeutic potential for TIMP3 during GMH-IVH.

Funding information:
  • NHLBI NIH HHS - R01 HL125815()
  • NHLBI NIH HHS - R01 HL133016()
  • NIAID NIH HHS - AI49371(United States)
  • NINDS NIH HHS - R21 NS088854()

Drosophila Fezf coordinates laminar-specific connectivity through cell-intrinsic and cell-extrinsic mechanisms.

  • Peng J
  • Elife
  • 2018 Mar 7

Literature context: Fisher Scientific Cat# A-21247; RRID:AB_141778 1:500


Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types that sequentially innervate M3 during development. Here we show that M3-specific innervation by both neurons is coordinated by Drosophila Fezf (dFezf), a conserved transcription factor that is selectively expressed by the earlier targeting input neuron. In this cell, dFezf instructs layer specificity and activates the expression of a secreted molecule (Netrin) that regulates the layer specificity of the other input neuron. We propose that employment of transcriptional modules that cell-intrinsically target neurons to specific layers, and cell-extrinsically recruit other neurons is a general mechanism for building layered networks of neural connections.

Funding information:
  • Howard Hughes Medical Institute - Gilliam Fellowship for Advanced Study()
  • NIAID NIH HHS - R21 AI073587(United States)

Insm1 Induces Neural Progenitor Delamination in Developing Neocortex via Downregulation of the Adherens Junction Belt-Specific Protein Plekha7.

  • Tavano S
  • Neuron
  • 2018 Mar 21

Literature context: Fisher Scientific Cat# A-21247, RRID:AB_141778 Donkey anti-Rabbit IgG (H+L) Hi


Delamination of neural progenitor cells (NPCs) from the ventricular surface is a crucial prerequisite to form the subventricular zone, the germinal layer linked to the expansion of the mammalian neocortex in development and evolution. Here, we dissect the molecular mechanism by which the transcription factor Insm1 promotes the generation of basal progenitors (BPs). Insm1 protein is most highly expressed in newborn BPs in mouse and human developing neocortex. Forced Insm1 expression in embryonic mouse neocortex causes NPC delamination, converting apical to basal radial glia. Insm1 represses the expression of the apical adherens junction belt-specific protein Plekha7. CRISPR/Cas9-mediated disruption of Plekha7 expression suffices to cause NPC delamination. Plekha7 overexpression impedes the intrinsic and counteracts the Insm1-induced, NPC delamination. Our findings uncover a novel molecular mechanism underlying NPC delamination in which a BP-genic transcription factor specifically targets the integrity of the apical adherens junction belt, rather than adherens junction components as such.

Funding information:
  • Intramural NIH HHS - ZIA BC010763-05(United States)

The WAVE Regulatory Complex and Branched F-Actin Counterbalance Contractile Force to Control Cell Shape and Packing in the Drosophila Eye.

  • Del Signore SJ
  • Dev. Cell
  • 2018 Feb 26

Literature context: her Scientific Cat. #: A-21247; RRID:AB_141778 Chemicals, Peptides, and Recomb


Contractile forces eliminate cell contacts in many morphogenetic processes. However, mechanisms that balance contractile forces to promote subtler remodeling remain unknown. To address this gap, we investigated remodeling of Drosophila eye lattice cells (LCs), which preserve cell contacts as they narrow to form the edges of a multicellular hexagonal lattice. We found that during narrowing, LC-LC contacts dynamically constrict and expand. Similar to other systems, actomyosin-based contractile forces promote pulses of constriction. Conversely, we found that WAVE-dependent branched F-actin accumulates at LC-LC contacts during expansion and functions to expand the cell apical area, promote shape changes, and prevent elimination of LC-LC contacts. Finally, we found that small Rho GTPases regulate the balance of contractile and protrusive dynamics. These data suggest a mechanism by which WAVE regulatory complex-based F-actin dynamics antagonize contractile forces to regulate cell shape and tissue topology during remodeling and thus contribute to the robustness and precision of the process.

Funding information:
  • NIAID NIH HHS - R01 AI058279-05(United States)

High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease.

  • Mrdjen D
  • Immunity
  • 2018 Feb 20

Literature context: 647 Thermo Fisher Cat# A21247; RRID:AB_141778 goat anti-rat polyclonal, Alexa


Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease.

Funding information:
  • NHLBI NIH HHS - HL086621(United States)

Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes.

  • Mariotti L
  • Nat Commun
  • 2018 Jan 8

Literature context: ) and goat anti-rat 647 (RRID:AB_141778, 1:800, Molecular Probes A21247


The signaling diversity of GABAergic interneurons to post-synaptic neurons is crucial to generate the functional heterogeneity that characterizes brain circuits. Whether this diversity applies to other brain cells, such as the glial cells astrocytes, remains unexplored. Using optogenetics and two-photon functional imaging in the adult mouse neocortex, we here reveal that parvalbumin- and somatostatin-expressing interneurons, two key interneuron classes in the brain, differentially signal to astrocytes inducing weak and robust GABAB receptor-mediated Ca2+ elevations, respectively. Furthermore, the astrocyte response depresses upon parvalbumin interneuron repetitive stimulations and potentiates upon somatostatin interneuron repetitive stimulations, revealing a distinguished astrocyte plasticity. Remarkably, the potentiated response crucially depends on the neuropeptide somatostatin, released by somatostatin interneurons, which activates somatostatin receptors at astrocytic processes. Our study unveils, in the living brain, a hitherto unidentified signaling specificity between interneuron subtypes and astrocytes opening a new perspective into the role of astrocytes as non-neuronal components of inhibitory circuits.

Funding information:
  • NCI NIH HHS - R01 CA137102(United States)

Engineered Tissue Folding by Mechanical Compaction of the Mesenchyme.

  • Hughes AJ
  • Dev. Cell
  • 2018 Jan 22

Literature context: moFisher Scientific Cat#A21247; RRID:AB_141778 AlexaFluor 568-labeled goat ant


Many tissues fold into complex shapes during development. Controlling this process in vitro would represent an important advance for tissue engineering. We use embryonic tissue explants, finite element modeling, and 3D cell-patterning techniques to show that mechanical compaction of the extracellular matrix during mesenchymal condensation is sufficient to drive tissue folding along programmed trajectories. The process requires cell contractility, generates strains at tissue interfaces, and causes patterns of collagen alignment around and between condensates. Aligned collagen fibers support elevated tensions that promote the folding of interfaces along paths that can be predicted by modeling. We demonstrate the robustness and versatility of this strategy for sculpting tissue interfaces by directing the morphogenesis of a variety of folded tissue forms from patterns of mesenchymal condensates. These studies provide insight into the active mechanical properties of the embryonic mesenchyme and establish engineering strategies for more robustly directing tissue morphogenesis ex vivo.

Funding information:
  • Cancer Research UK - 11008(United Kingdom)
  • NICHD NIH HHS - DP2 HD080351()
  • NIDCR NIH HHS - R01 DE016402()
  • NIDCR NIH HHS - R01 DE025668()
  • NIH HHS - S10 OD021664()

Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport.

  • Tas RP
  • Neuron
  • 2017 Dec 20

Literature context:


Microtubules are essential for polarized transport in neurons, but how their organization guides motor proteins to axons or dendrites is unclear. Because different motors recognize distinct microtubule properties, we used optical nanoscopy to examine the relationship between microtubule orientations, stability, and modifications. Nanometric tracking of motors to super-resolve microtubules and determine their polarity revealed that in dendrites, stable and acetylated microtubules are mostly oriented minus-end out, while dynamic and tyrosinated microtubules are oriented oppositely. In addition, microtubules with similar orientations and modifications form bundles that bias transport. Importantly, because the plus-end-directed Kinesin-1 selectively interacts with acetylated microtubules, this organization guides this motor out of dendrites and into axons. In contrast, Kinesin-3 prefers tyrosinated microtubules and can enter both axons and dendrites. This separation of distinct microtubule subsets into oppositely oriented bundles constitutes a key architectural principle of the neuronal microtubule cytoskeleton that enables polarized sorting by different motor proteins.

Funding information:
  • Medical Research Council - G0901533(United Kingdom)

Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango.

  • Talay M
  • Neuron
  • 2017 Nov 15

Literature context: Fisher Scientific Cat# A-21247; RRID:AB_141778 Bacterial and Virus Strains


Mapping neural circuits across defined synapses is essential for understanding brain function. Here we describe trans-Tango, a technique for anterograde transsynaptic circuit tracing and manipulation. At the core of trans-Tango is a synthetic signaling pathway that is introduced into all neurons in the animal. This pathway converts receptor activation at the cell surface into reporter expression through site-specific proteolysis. Specific labeling is achieved by presenting a tethered ligand at the synapses of genetically defined neurons, thereby activating the pathway in their postsynaptic partners and providing genetic access to these neurons. We first validated trans-Tango in the Drosophila olfactory system and then implemented it in the gustatory system, where projections beyond the first-order receptor neurons are not fully characterized. We identified putative second-order neurons within the sweet circuit that include projection neurons targeting known neuromodulation centers in the brain. These experiments establish trans-Tango as a flexible platform for transsynaptic circuit analysis.

Funding information:
  • NIDCD NIH HHS - R01 DC013561()
  • NIDCD NIH HHS - R21 DC014333()
  • NIMH NIH HHS - R01 MH086920()
  • NIMH NIH HHS - R01 MH105368()

Anti-TCRβ mAb in Combination With Neurogenin3 Gene Therapy Reverses Established Overt Type 1 Diabetes in Female NOD Mice.

  • Xie A
  • Endocrinology
  • 2017 Oct 1

Literature context: Life Technology Goat 1/100 RRID:AB_141778


Insulin-producing β cells in patients with type 1 diabetes (T1D) are destroyed by T lymphocytes. We investigated whether targeting the T-cell receptor (TCR) with a monoclonal antibody (mAb) abrogates T-cell response against residual and newly formed islets in overtly diabetic nonobese diabetic (NOD) mice. NOD mice with blood glucose levels of 250 to 350 mg/dL or 350 to 450 mg/dL were considered as new-onset or established overt diabetes, respectively. These diabetic NOD mice were transiently treated with an anti-TCR β chain (TCRβ) mAb, H57-597, for 5 days. Two weeks later, some NOD mice with established overt diabetes further received hepatic gene therapy using the islet-lineage determining gene Neurogenin3 (Ngn3), in combination with the islet growth factor gene betacellulin (Btc). We found that anti-TCRβ mAb (50 µg/d) reversed >80% new-onset diabetes in NOD mice for >14 weeks by reducing the number of effector T cells in the pancreas. However, anti-TCRβ mAb therapy alone reversed only ∼20% established overt diabetes in these mice. Among those overtly diabetic NOD mice whose diabetes was resistant to anti-TCRβ mAb treatment, ∼60% no longer had diabetes when they also received Ngn3-Btc hepatic gene transfer 2 weeks after initial anti-TCRβ mAb treatment. This combination of Ngn3-Btc gene therapy and anti-TCRβ mAb treatment induced the sustained formation of periportal insulin-producing cells in the liver of overtly diabetic mice. Therefore, directly targeting TCRβ with a mAb potently reverses new-onset T1D in NOD mice and protects residual and newly formed gene therapy-induced hepatic neo-islets from T-cell‒mediated destruction in mice with established overt diabetes.

Funding information:
  • NIAID NIH HHS - R01 AI074847(United States)
  • NIDDK NIH HHS - P30 DK079638()

Cerebral Vein Malformations Result from Loss of Twist1 Expression and BMP Signaling from Skull Progenitor Cells and Dura.

  • Tischfield MA
  • Dev. Cell
  • 2017 Sep 11

Literature context: :1000)Invitrogen (Thermo Fisher)A-21247, A-11006Goat anti-Mouse IgG (H+


Dural cerebral veins (CV) are required for cerebrospinal fluid reabsorption and brain homeostasis, but mechanisms that regulate their growth and remodeling are unknown. We report molecular and cellular processes that regulate dural CV development in mammals and describe venous malformations in humans with craniosynostosis and TWIST1 mutations that are recapitulated in mouse models. Surprisingly, Twist1 is dispensable in endothelial cells but required for specification of osteoprogenitor cells that differentiate into preosteoblasts that produce bone morphogenetic proteins (BMPs). Inactivation of Bmp2 and Bmp4 in preosteoblasts and periosteal dura causes skull and CV malformations, similar to humans harboring TWIST1 mutations. Notably, arterial development appears normal, suggesting that morphogens from the skull and dura establish optimal venous networks independent from arterial influences. Collectively, our work establishes a paradigm whereby CV malformations result from primary or secondary loss of paracrine BMP signaling from preosteoblasts and dura, highlighting unique cellular interactions that influence tissue-specific angiogenesis in mammals.

An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

  • West JJ
  • Curr. Biol.
  • 2017 Aug 7

Literature context: #A21247; RRID:AB_141778 Alexa Fluo


In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress.

Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia.

  • Windrem MS
  • Cell Stem Cell
  • 2017 Aug 3

Literature context: #A-21247; RRID:AB_141778 Goat anti-


In this study, we investigated whether intrinsic glial dysfunction contributes to the pathogenesis of schizophrenia (SCZ). Our approach was to establish humanized glial chimeric mice using glial progenitor cells (GPCs) produced from induced pluripotent stem cells derived from patients with childhood-onset SCZ. After neonatal implantation into myelin-deficient shiverer mice, SCZ GPCs showed premature migration into the cortex, leading to reduced white matter expansion and hypomyelination relative to controls. The SCZ glial chimeras also showed delayed astrocytic differentiation and abnormal astrocytic morphologies. When established in myelin wild-type hosts, SCZ glial mice showed reduced prepulse inhibition and abnormal behavior, including excessive anxiety, antisocial traits, and disturbed sleep. RNA-seq of cultured SCZ human glial progenitor cells (hGPCs) revealed disrupted glial differentiation-associated and synaptic gene expression, indicating that glial pathology was cell autonomous. Our data therefore suggest a causal role for impaired glial maturation in the development of schizophrenia and provide a humanized model for its in vivo assessment.

Funding information:
  • NIMH NIH HHS - R01 MH099578()
  • NIMH NIH HHS - R01 MH104701()

Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation.

  • Cho C
  • Neuron
  • 2017 Aug 30

Literature context: 1247, RRID:AB_141778 Rabbit monoclonal anti-HA Cell


Reck, a GPI-anchored membrane protein, and Gpr124, an orphan GPCR, have been implicated in Wnt7a/Wnt7b signaling in the CNS vasculature. We show here that vascular endothelial cell (EC)-specific reduction in Reck impairs CNS angiogenesis and that EC-specific postnatal loss of Reck, combined with loss of Norrin, impairs blood-brain barrier (BBB) maintenance. The most N-terminal domain of Reck binds to the leucine-rich repeat (LRR) and immunoglobulin (Ig) domains of Gpr124, and weakening this interaction by targeted mutagenesis reduces Reck/Gpr124 stimulation of Wnt7a signaling in cell culture and impairs CNS angiogenesis. Finally, a soluble Gpr124(LRR-Ig) probe binds to cells expressing Frizzled, Wnt7a or Wnt7b, and Reck, and a soluble Reck(CC1-5) probe binds to cells expressing Frizzled, Wnt7a or Wnt7b, and Gpr124. These experiments indicate that Reck and Gpr124 are part of the cell surface protein complex that transduces Wnt7a- and Wnt7b-specific signals in mammalian CNS ECs to promote angiogenesis and regulate the BBB.

aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity.

  • Rodriguez J
  • Dev. Cell
  • 2017 Aug 21

Literature context: : AB_141373 / RRID: AB_141374 / RRID: AB_141778α-mouse-HRPDAKOP0447; RRID: AB_2


The conserved polarity effector proteins PAR-3, PAR-6, CDC-42, and atypical protein kinase C (aPKC) form a core unit of the PAR protein network, which plays a central role in polarizing a broad range of animal cell types. To functionally polarize cells, these proteins must activate aPKC within a spatially defined membrane domain on one side of the cell in response to symmetry-breaking cues. Using the Caenorhabditis elegans zygote as a model, we find that the localization and activation of aPKC involve distinct, specialized aPKC-containing assemblies: a PAR-3-dependent assembly that responds to polarity cues and promotes efficient segregation of aPKC toward the anterior but holds aPKC in an inactive state, and a CDC-42-dependent assembly in which aPKC is active but poorly segregated. Cycling of aPKC between these distinct functional assemblies, which appears to depend on aPKC activity, effectively links cue-sensing and effector roles within the PAR network to ensure robust establishment of polarity.

Recruited Monocytes and Type 2 Immunity Promote Lung Regeneration following Pneumonectomy.

  • Lechner AJ
  • Cell Stem Cell
  • 2017 Jul 6

Literature context: o A21247; RRID:AB_141778 Rat monocl


To investigate the role of immune cells in lung regeneration, we used a unilateral pneumonectomy model that promotes the formation of new alveoli in the remaining lobes. Immunofluorescence and single-cell RNA sequencing found CD115+ and CCR2+ monocytes and M2-like macrophages accumulating in the lung during the peak of type 2 alveolar epithelial stem cell (AEC2) proliferation. Genetic loss of function in mice and adoptive transfer studies revealed that bone marrow-derived macrophages (BMDMs) traffic to the lung through a CCL2-CCR2 chemokine axis and are required for optimal lung regeneration, along with Il4ra-expressing leukocytes. Our data suggest that these cells modulate AEC2 proliferation and differentiation. Finally, we provide evidence that group 2 innate lymphoid cells are a source of IL-13, which promotes lung regeneration. Together, our data highlight the potential for immunomodulatory therapies to stimulate alveologenesis in adults.

Funding information:
  • NHLBI NIH HHS - F30 HL131198()
  • NHLBI NIH HHS - R01 HL127002()
  • NHLBI NIH HHS - U01 HL134766()
  • NIGMS NIH HHS - T32 GM007618()

Hec1 Tail Phosphorylation Differentially Regulates Mammalian Kinetochore Coupling to Polymerizing and Depolymerizing Microtubules.

  • Long AF
  • Curr. Biol.
  • 2017 Jun 5

Literature context: t#A21247; RRID:AB_141778 Chemicals,


The kinetochore links chromosomes to dynamic spindle microtubules and drives both chromosome congression and segregation. To do so, the kinetochore must hold on to depolymerizing and polymerizing microtubules. At metaphase, one sister kinetochore couples to depolymerizing microtubules, pulling its sister along polymerizing microtubules [1, 2]. Distinct kinetochore-microtubule interfaces mediate these behaviors: active interfaces transduce microtubule depolymerization into mechanical work, and passive interfaces generate friction as the kinetochore moves along microtubules [3, 4]. Despite a growing understanding of the molecular components that mediate kinetochore binding [5-7], we do not know how kinetochores physically interact with polymerizing versus depolymerizing microtubule bundles, and whether they use the same mechanisms and regulation to do so. To address this question, we focus on the mechanical role of the essential load-bearing protein Hec1 [8-11] in mammalian cells. Hec1's affinity for microtubules is regulated by Aurora B phosphorylation on its N-terminal tail [12-15], but its role at the interface with polymerizing versus depolymerizing microtubules remains unclear. Here we use laser ablation to trigger cellular pulling on mutant kinetochores and decouple sisters in vivo, and thereby separately probe Hec1's role on polymerizing versus depolymerizing microtubules. We show that Hec1 tail phosphorylation tunes friction along polymerizing microtubules and yet does not compromise the kinetochore's ability to grip depolymerizing microtubules. Together, the data suggest that kinetochore regulation has differential effects on engagement with growing and shrinking microtubules. Through this mechanism, the kinetochore can modulate its grip on microtubules over mitosis and yet retain its ability to couple to microtubules powering chromosome movement.

Funding information:
  • NIGMS NIH HHS - DP2 GM119177()

Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids.

  • Nikolić MZ
  • Elife
  • 2017 Jun 30

Literature context: ientific A21247 1:2000 RRID:AB_141778 Streptavidin 594 Jackson Immuno


The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated.

Interferon-λ Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Fitness.

  • Galani IE
  • Immunity
  • 2017 May 16

Literature context: #A-21247; RRID:AB_141778 Donkey pol


Lambda interferons (IFNλs) or type III IFNs share homology, expression patterns, signaling cascades, and antiviral functions with type I IFNs. This has complicated the unwinding of their unique non-redundant roles. Through the systematic study of influenza virus infection in mice, we herein show that IFNλs are the first IFNs produced that act at the epithelial barrier to suppress initial viral spread without activating inflammation. If infection progresses, type I IFNs come into play to enhance viral resistance and induce pro-inflammatory responses essential for confronting infection but causing immunopathology. Central to this are neutrophils which respond to both cytokines to upregulate antimicrobial functions but exhibit pro-inflammatory activation only to type I IFNs. Accordingly, Ifnlr1-/- mice display enhanced type I IFN production, neutrophilia, lung injury, and lethality, while therapeutic administration of PEG-IFNλ potently suppresses these effects. IFNλs therefore constitute the front line of antiviral defense in the lung without compromising host fitness.

Funding information:
  • NINDS NIH HHS - T32 NS063391(United States)

An inhibitory gate for state transition in cortex.

  • Zucca S
  • Elife
  • 2017 May 16

Literature context: -rat 647 (RRID:AB_141778, 1:800, In


Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.

Funding information:
  • NINDS NIH HHS - U01 NS090576()

Active Touch and Self-Motion Encoding by Merkel Cell-Associated Afferents.

  • Severson KS
  • Neuron
  • 2017 May 3

Literature context: A-21247; RRID:AB_141778 Rabbit pol


Touch perception depends on integrating signals from multiple types of peripheral mechanoreceptors. Merkel-cell associated afferents are thought to play a major role in form perception by encoding surface features of touched objects. However, activity of Merkel afferents during active touch has not been directly measured. Here, we show that Merkel and unidentified slowly adapting afferents in the whisker system of behaving mice respond to both self-motion and active touch. Touch responses were dominated by sensitivity to bending moment (torque) at the base of the whisker and its rate of change and largely explained by a simple mechanical model. Self-motion responses encoded whisker position within a whisk cycle (phase), not absolute whisker angle, and arose from stresses reflecting whisker inertia and activity of specific muscles. Thus, Merkel afferents send to the brain multiplexed information about whisker position and surface features, suggesting that proprioception and touch converge at the earliest neural level.

Funding information:
  • NINDS NIH HHS - P30 NS050274()
  • NINDS NIH HHS - R01 NS034814()
  • NINDS NIH HHS - R01 NS089652()
  • NINDS NIH HHS - R35 NS097344()

Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer.

  • Carr FE
  • Endocrinology
  • 2017 May 31

Literature context:


Dysregulation of the thyroid hormone receptor (TR)β is common in human cancers. Restoration of functional TRβ delays tumor progression in models of thyroid and breast cancers implicating TRβ as a tumor suppressor. Conversely, aberrant expression of the runt-related transcription factor 2 (Runx2) is established in the progression and metastasis of thyroid, breast, and other cancers. Silencing of Runx2 diminishes tumor invasive characteristics. With TRβ as a tumor suppressor and Runx2 as a tumor promoter, a compelling question is whether there is a functional relationship between these regulatory factors in thyroid tumorigenesis. Here, we demonstrated that these proteins are reciprocally expressed in normal and malignant thyroid cells; TRβ is high in normal cells, and Runx2 is high in malignant cells. T3 induced a time- and concentration-dependent decrease in Runx2 expression. Silencing of TRβ by small interfering RNA knockdown resulted in a corresponding increase in Runx2 and Runx2-regulated genes, indicating that TRβ levels directly impact Runx2 expression and associated epithelial to mesenchymal transition molecules. TRβ specifically bound to 3 putative thyroid hormone-response element motifs within the Runx2-P1 promoter ((-)105/(+)133) as detected by EMSA and chromatin immunoprecipitation. TRβ suppressed Runx2 transcriptional activities, thus confirming TRβ regulation of Runx2 at functional thyroid hormone-response elements. Significantly, these findings indicate that a ratio of the tumor-suppressor TRβ and tumor-promoting Runx2 may reflect tumor aggression and serve as biomarkers in biopsy tissues. The discovery of this TRβ-Runx2 signaling supports the emerging role of TRβ as a tumor suppressor and reveals a novel pathway for intervention.

Funding information:
  • NHLBI NIH HHS - R01 HL128630(United States)

Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia.

  • Wallace ML
  • Neuron
  • 2017 Apr 5

Literature context: A-21247; RRID:AB_141778 Donkey ant


The basal ganglia (BG) integrate inputs from diverse sensorimotor, limbic, and associative regions to guide action-selection and goal-directed behaviors. The entopeduncular nucleus (EP) is a major BG output nucleus and has been suggested to channel signals from distinct BG nuclei to target regions involved in diverse functions. Here we use single-cell transcriptional and molecular analyses to demonstrate that the EP contains at least three classes of projection neurons-glutamate/GABA co-releasing somatostatin neurons, glutamatergic parvalbumin neurons, and GABAergic parvalbumin neurons. These classes comprise functionally and anatomically distinct output pathways that differentially affect EP target regions, such as the lateral habenula (LHb) and thalamus. Furthermore, LHb- and thalamic-projecting EP neurons are differentially innervated by subclasses of striatal and pallidal neurons. Therefore, we identify previously unknown subdivisions within the EP and reveal the existence of cascading, molecularly distinct projections through striatum and globus pallidus to EP targets within epithalamus and thalamus.

Funding information:
  • Howard Hughes Medical Institute - R01 NS046579()
  • NINDS NIH HHS - T32 NS007484()

Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis.

  • Sidhaye J
  • Elife
  • 2017 Apr 4

Literature context: anti-rat (RRID:AB_141778, Invitroge


Organ formation is a multi-scale event that involves changes at the intracellular, cellular and tissue level. Organogenesis often starts with the formation of characteristically shaped organ precursors. However, the cellular mechanisms driving organ precursor formation are often not clear. Here, using zebrafish, we investigate the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium (RNE), a part of the optic cup. We show that in addition to basal shrinkage of RNE cells, active migration of connected epithelial cells into the RNE is a crucial player in its formation. This cellular movement is driven by progressive cell-matrix contacts and actively translocates prospective RNE cells to their correct location before they adopt neuroepithelial fate. Failure of this migration during neuroepithelium formation leads to ectopic determination of RNE cells and consequently impairs optic cup formation. Overall, this study illustrates how spatiotemporal coordination between morphogenic movements and fate determination critically influences organogenesis.

A Surveillance Mechanism Ensures Repair of DNA Lesions during Zygotic Reprogramming.

  • Ladstätter S
  • Cell
  • 2016 Dec 15

Literature context: Anti-Rat IgG (H+L)InvitrogenCat#A-21247Chemicals, Peptides, and Recombi


Sexual reproduction culminates in a totipotent zygote with the potential to produce a whole organism. Sperm chromatin reorganization and epigenetic reprogramming that alter DNA and histone modifications generate a totipotent embryo. Active DNA demethylation of the paternal genome has been proposed to involve base excision and DNA repair-based mechanisms. The nature and consequence of DNA lesions generated during reprogramming are not known. Using mouse genetics and chemical biology, we discovered that Tet3-dependent zygotic reprogramming generates paternal DNA lesions that are monitored by a surveillance mechanism. In vivo structure-function rescue assays revealed that cohesin-dependent repair of paternal DNA lesions prevents activation of a Chk1-dependent checkpoint that delays mitotic entry. Culturing conditions affect checkpoint stringency, which has implications for human in vitro fertilization. We propose the zygotic checkpoint senses DNA lesions generated during paternal DNA demethylation and ensures reprogrammed loci are repaired before mitosis to prevent chromosome fragmentation, embryo loss, and infertility.

Funding information:
  • NHLBI NIH HHS - R01 HL070029(United States)

Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila.

  • Dey NS
  • Elife
  • 2016 Oct 26

Literature context: Scientific Cat# A-21247 RRID:AB_141778) used at 1:500. DNA was stained


Drosophila hematopoiesis bears striking resemblance with that of vertebrates, both in the context of distinct phases and the signaling molecules. Even though, there has been no evidence of Hematopoietic stem cells (HSCs) in Drosophila, the larval lymph gland with its Hedgehog dependent progenitors served as an invertebrate model of progenitor biology. Employing lineage-tracing analyses, we have now identified Notch expressing HSCs in the first instar larval lymph gland. Our studies clearly establish the hierarchical relationship between Notch expressing HSCs and the previously described Domeless expressing progenitors. These HSCs require Decapentapelagic (Dpp) signal from the hematopoietic niche for their maintenance in an identical manner to vertebrate aorta-gonadal-mesonephros (AGM) HSCs. Thus, this study not only extends the conservation across these divergent taxa, but also provides a new model that can be exploited to gain better insight into the AGM related Hematopoietic stem cells (HSCs).

Funding information:
  • NEI NIH HHS - EY04067(United States)

Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas.

  • D'Souza RD
  • Elife
  • 2016 Sep 26

Literature context: :"641369","term_text":"A21247"}}


Diverse features of sensory stimuli are selectively processed in distinct brain areas. The relative recruitment of inhibitory and excitatory neurons within an area controls the gain of neurons for appropriate stimulus coding. We examined how such a balance of inhibition and excitation is differentially recruited across multiple levels of a cortical hierarchy by mapping the locations and strengths of synaptic inputs to pyramidal and parvalbumin (PV)-expressing neurons in feedforward and feedback pathways interconnecting primary (V1) and two higher visual areas. While interareal excitation was stronger in PV than in pyramidal neurons in all layer 2/3 pathways, we observed a gradual scaling down of the inhibition/excitation ratio from the most feedforward to the most feedback pathway. Our results indicate that interareal gain control depends on the hierarchical position of the source and the target, the direction of information flow through the network, and the laminar location of target neurons.