X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Rabbit Anti-Tryptophan hydroxylase 2 Polyclonal Antibody, Unconjugated

RRID:AB_10806898

Antibody ID

AB_10806898

Target Antigen

Rabbit Tryptophan hydroxylase 2 mouse, human, rat, rat, human, mouse

Proper Citation

(Millipore Cat# ABN60, RRID:AB_10806898)

Clonality

polyclonal antibody

Comments

seller recommendations: Immunohistochemistry; Western Blot; Western Blotting ; Immunohistochemistry (Paraffin)

Host Organism

rabbit

Vendor

Millipore

Cat Num

ABN60

Publications that use this research resource

Chrna5-expressing neurons in the interpeduncular nucleus mediate aversion primed by prior stimulation or nicotine exposure.

  • Morton G
  • J. Neurosci.
  • 2018 Jun 28

Literature context:


Abstract:

Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus, encoding the α5, α3 and β4 nicotinic receptor subunits. The α5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents, and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here we show that in the interpeduncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcholine receptor stimulation are markedly reduced in α5 null mice. In this regard, we find IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of α5. To probe the functional role of α5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes, transcribed on the opposite strand. Chrna5-expressing IP neurons are GABAergic and project to distant targets in the mesopontine raphe and tegmentum, rather than forming local circuits. Optogenetic stimulation of Chrna5-expressing IP neurons failed to elicit physical manifestations of withdrawal. However, following recent prior stimulation or exposure to nicotine, IP stimulation becomes aversive. These results using mice of both sexes support the idea that the risk allele of CHRNA5 may increase the drive to smoke via loss of IP-mediated nicotine aversion.SIGNIFICANCE STATEMENTUnderstanding the receptors and neural pathways underlying the reinforcing and aversive effects of nicotine may suggest new treatments for tobacco addiction. Part of the individual variability in smoking is associated with specific forms of the α5 nicotinic receptor subunit gene. Here we show that deletion of the α5 subunit in mice markedly reduces the cellular response to nicotine and acetylcholine in the interpeduncular nucleus (IP). Stimulation of α5-expressing IP neurons using optogenetics is aversive, but this effect requires priming by recent prior stimulation or exposure to nicotine.. These results support the idea that the smoking-associated variant of the α5 gene may increase the drive to smoke via loss of IP-mediated nicotine aversion.

Funding information:
  • NCI NIH HHS - R01CA90446(United States)
  • NIDA NIH HHS - R01 DA035838(United States)
  • NINDS NIH HHS - N01NS02331(United States)

Learning and Stress Shape the Reward Response Patterns of Serotonin Neurons.

  • Zhong W
  • J. Neurosci.
  • 2017 Sep 13

Literature context:


Abstract:

The ability to predict reward promotes animal survival. Both dopamine neurons in the ventral tegmental area and serotonin neurons in the dorsal raphe nucleus (DRN) participate in reward processing. Although the learning effects on dopamine neurons have been extensively characterized, it remains largely unknown how the response of serotonin neurons evolves during learning. Moreover, although stress is known to strongly influence reward-related behavior, we know very little about how stress modulates neuronal reward responses. By monitoring Ca2+ signals during the entire process of Pavlovian conditioning, we here show that learning differentially shapes the response patterns of serotonin neurons and dopamine neurons in mice of either sex. Serotonin neurons gradually develop a slow ramp-up response to the reward-predicting cue, and ultimately remain responsive to the reward, whereas dopamine neurons increase their response to the cue but reduce their response to the reward. For both neuron types, the responses to the cue and the reward depend on reward value, are reversible when the reward is omitted, and are rapidly reinstated by restoring the reward. We also found that stressors including head restraint and fearful context substantially reduce the response strength of both neuron types, to both the cue and the reward. These results reveal the dynamic nature of the reward responses, support the hypothesis that DRN serotonin neurons signal the current likelihood of receiving a net benefit, and suggest that the inhibitory effect of stress on the reward responses of serotonin neurons and dopamine neurons may contribute to stress-induced anhedonia.SIGNIFICANCE STATEMENT Both serotonin neurons in the dorsal raphe and dopamine neurons in the ventral tegmental area are intimately involved in reward processing. Using long-term fiber photometry of Ca2+ signals from freely behaving mice, we here show that learning produces a ramp-up activation pattern in serotonin neurons that differs from that in dopamine neurons, indicating complementary roles for these two neuron types in reward processing. Moreover, stress treatment substantially reduces the reward responses of both serotonin neurons and dopamine neurons, suggesting a possible physiological basis for stress-induced anhedonia.

Specific connections of the interpeduncular subnuclei reveal distinct components of the habenulopeduncular pathway.

  • Quina LA
  • J. Comp. Neurol.
  • 2017 Aug 15

Literature context:


Abstract:

The habenulopeduncular pathway consists of the medial habenula (MHb), its output tract, the fasciculus retroflexus, and its principal target, the interpeduncular nucleus (IP). Several IP subnuclei have been described, but their specific projections and relationship to habenula inputs are not well understood. Here we have used viral, transgenic, and conventional anterograde and retrograde tract-tracing methods to better define the relationship between the dorsal and ventral MHb, the IP, and the secondary efferent targets of this system. Although prior studies have reported that the IP has ascending projections to ventral forebrain structures, we find that these projections originate almost entirely in the apical subnucleus, which may be more appropriately described as part of the median raphe system. The laterodorsal tegmental nucleus receives inhibitory inputs from the contralateral dorsolateral IP, and mainly excitatory inputs from the ipsilateral rostrolateral IP subnucleus. The midline central gray of the pons and nucleus incertus receive input from the rostral IP, which contains a mix of inhibitory and excitatory neurons, and the dorsomedial IP, which is exclusively inhibitory. The lateral central gray of the pons receives bilateral input from the lateral IP, which in turn receives bilateral input from the dorsal MHb. Taken together with prior studies of IP projections to the raphe, these results form an emerging map of the habenulopeduncular system that has significant implications for the proposed function of the IP in a variety of behaviors, including models of mood disorders and behavioral responses to nicotine.

Serotonin axons in the neocortex of the adult female mouse regrow after traumatic brain injury.

  • Kajstura TJ
  • J. Neurosci. Res.
  • 2017 May 10

Literature context:


Abstract:

It is widely held that injured neurons in the central nervous system do not undergo axonal regrowth. However, there is mounting evidence that serotonin axons are a notable exception. Serotonin axons undergo long-distance regrowth in the neocortex after amphetamine lesion, and, following a penetrating stab injury, they can regrow from cut ends to traverse the stab rift. Traumatic brain injury (TBI) is clinically prevalent and can lead to pathologies, such as depression, that are related to serotonergic dysfunction. Thus, whether serotonin axons can regrow after TBI is an important question. We used two models for TBI-a persistent open skull condition and controlled cortical impact-to evoke injury in adult female mouse neocortex, and assessed serotonin axon density 1 week, 1 month, and 3 months after injury by serotonin transporter immunohistochemistry. We found that after both forms of TBI, serotonin axon density is decreased posterior but not anterior to the injury site when measured in layer 1 at 1 week post surgery, and that serotonin axons are capable of regrowing into the distal zone to increase density by 1 month post surgery. This pattern is consistent with the anterior-to-posterior course of serotonin axons in the neocortex. TBI in these models is associated with significant reactive astrogliosis both anterior and posterior to the impact, but the degree of reactive astrogliosis is not correlated with serotonin axon density when measured 1 week after TBI. Microglial density remains constant following both types of injuries, but microglial condensation was detected 1 week after controlled cortical impact.

Funding information:
  • NINDS NIH HHS - R21 NS081467()

Efferent pathways of the mouse lateral habenula.

  • Quina LA
  • J. Comp. Neurol.
  • 2015 Jan 1

Literature context:


Abstract:

The lateral habenula (LHb) is part of the habenula complex of the dorsal thalamus. Recent studies of the LHb have focused on its projections to the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg), which contain γ-aminobutyric acid (GABA)ergic neurons that mediate reward prediction error via inhibition of dopaminergic activity. However, older studies in the rat have also identified LHb outputs to the lateral and posterior hypothalamus, median raphe, dorsal raphe, and dorsal tegmentum. Although these studies have shown that the medial and lateral divisions of the LHb have somewhat distinct projections, the topographic specificity of LHb efferents is not completely understood, and the relative extent of these projections to brainstem targets is unknown. Here we have used anterograde tracing with adeno-associated virus-mediated expression of green fluorescent protein, combined with serial two-photon tomography, to map the efferents of the LHb on a standard coordinate system for the entire mouse brain, and reconstruct the efferent pathways of the LHb in three dimensions. Using automated quantitation of fiber density, we show that in addition to the RMTg, the median raphe, caudal dorsal raphe, and pontine central gray are major recipients of LHb efferents. By using retrograde tract tracing with cholera toxin subunit B, we show that LHb neurons projecting to the hypothalamus, VTA, median raphe, caudal dorsal raphe, and pontine central gray reside in characteristic, but sometimes overlapping regions of the LHb. Together these results provide the anatomical basis for systematic studies of LHb function in neural circuits and behavior in mice. J. Comp. Neurol. 523:32-60, 2015. © 2014 Wiley Periodicals, Inc.

Funding information:
  • NEI NIH HHS - R21EY021016(United States)