X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

c-IAP2 (58C7) Rabbit mAb antibody

RRID:AB_10693298

Antibody ID

AB_10693298

Target Antigen

c-IAP2 human

Proper Citation

(Cell Signaling Technology Cat# 3130, RRID:AB_10693298)

Clonality

monoclonal antibody

Comments

Applications: W, IP. Consolidation: AB_10827982, AB_823468.

Clone ID

58C7

Host Organism

rabbit

Vendor

Cell Signaling Technology

Cat Num

3130 also 3130S, 3130T, 3130P

Publications that use this research resource

Systematic Functional Annotation of Somatic Mutations in Cancer.

  • Ng PK
  • Cancer Cell
  • 2018 Mar 12

Literature context:


Abstract:

The functional impact of the vast majority of cancer somatic mutations remains unknown, representing a critical knowledge gap for implementing precision oncology. Here, we report the development of a moderate-throughput functional genomic platform consisting of efficient mutant generation, sensitive viability assays using two growth factor-dependent cell models, and functional proteomic profiling of signaling effects for select aberrations. We apply the platform to annotate >1,000 genomic aberrations, including gene amplifications, point mutations, indels, and gene fusions, potentially doubling the number of driver mutations characterized in clinically actionable genes. Further, the platform is sufficiently sensitive to identify weak drivers. Our data are accessible through a user-friendly, public data portal. Our study will facilitate biomarker discovery, prediction algorithm improvement, and drug development.

Funding information:
  • NCI NIH HHS - P30 CA016672()
  • NHLBI NIH HHS - HL-090775(United States)

Loss of functional BAP1 augments sensitivity to TRAIL in cancer cells.

  • Kolluri KK
  • Elife
  • 2018 Jan 18

Literature context:


Abstract:

Malignant mesothelioma (MM) is poorly responsive to systemic cytotoxic chemotherapy and invariably fatal. Here we describe a screen of 94 drugs in 15 exome-sequenced MM lines and the discovery of a subset defined by loss of function of the nuclear deubiquitinase BRCA associated protein-1 (BAP1) that demonstrate heightened sensitivity to TRAIL (tumour necrosis factor-related apoptosis-inducing ligand). This association is observed across human early passage MM cultures, mouse xenografts and human tumour explants. We demonstrate that BAP1 deubiquitinase activity and its association with ASXL1 to form the Polycomb repressive deubiquitinase complex (PR-DUB) impacts TRAIL sensitivity implicating transcriptional modulation as an underlying mechanism. Death receptor agonists are well-tolerated anti-cancer agents demonstrating limited therapeutic benefit in trials without a targeting biomarker. We identify BAP1 loss-of-function mutations, which are frequent in MM, as a potential genomic stratification tool for TRAIL sensitivity with immediate and actionable therapeutic implications.

Funding information:
  • Cancer Research UK - A17341()
  • NINDS NIH HHS - R01NS043915(United States)
  • Wellcome - WT097452MA()
  • Wellcome Trust - 106555/Z/14/Z()
  • Wellcome Trust - WT107963AIA()

A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development.

  • Boege Y
  • Cancer Cell
  • 2017 Sep 11

Literature context:


Abstract:

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX.

Funding information:
  • NIDDK NIH HHS - R01 DK107220()