X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Phospho-c-Fos (Ser32) (D82C12) XP Rabbit mAb antibody

RRID:AB_10557109

Antibody ID

AB_10557109

Target Antigen

Phospho-c-Fos (Ser32) (D82C12) XP Rabbit mAb hamster, porcine, human, non-human primate, rat, horse, mouse, bovine, h, m, r, (hm, mk, b, pg, hr)

Vendor

Cell Signaling Technology

Cat Num

5348 also 5348S, 5348P

Proper Citation

(Cell Signaling Technology Cat# 5348, RRID:AB_10557109)

Clonality

monoclonal antibody

Host Organism

rabbit

Comments

manufacturer recommendations: Western blot,Immunoprecipitation,Immunofluorescence (Immunocytochemistry),Flow cytometry; Immunocytochemistry; Western Blot; Immunofluorescence; Flow Cytometry; ImmunoprecipitationConsolidated with AB_10576565 on 09/20/16

miR-4725-3p targeting Stim1 signaling is involved in xanthohumol inhibition of glioma cell invasion.

  • Ho KH
  • J. Neurochem.
  • 2018 May 10

Literature context: 348; RRID:AB_10557109) antibodies were purchased from


Abstract:

Glioblastoma multiforme (GBM) is the most common brain tumor in adults. Due to its highly invasive nature, it is not easy to treat, resulting in high mortality rates. Stromal interacting molecule 1 (Stim1) plays important roles in regulating store-operated Ca2+ entry (SOCE), and controls invasion by cancer cells. However, the mechanisms and functions of Stim1 in glioma progression are still unclear. In this study, we investigated the effects of targeting Stim1 expression on glioma cell invasion. By analyzing profiles of GBM patients from RNA-sequencing data in The Cancer Genome Atlas (TCGA), higher expression levels of STIM1 were correlated with the poor survival. Furthermore, signaling pathways associated with tumor malignancy, including the epithelial-to-mesenchymal transition (EMT), were activated in patients with high STIM1 expression according to gene set enrichment analyses. Higher Stim1 levels were found in glioma cells compared to human astrocytes, and these higher levels enhanced glioma cell invasion. Xanthohumol (XN), a prenylated flavonoid extracted from the hop plant Humulus lupulus L. (Cannabaceae), significantly reduced cell invasion through inhibiting Stim1 expression. From an micro(mi)RNA array analysis, miR-4725-3p was upregulated by XN treatment. Overexpression of miR-4725-3p inhibited glioma cell invasion via directly targeting the 3'-untranslated region of STIM1. The extracellular signal-regulated kinase/c-Fos pathway was also validated to participate in XN-upregulated miR-4725-3p expression according to promoter and chromatin immunoprecipitation assays. These results emphasize that miR-4725-3p-inhibited STIM1 signaling is involved in XN-attenuated glioma cell invasion. These findings may provide insights into novel therapeutic strategies for future glioblastoma therapy and drug development. This article is protected by copyright. All rights reserved.

Funding information:
  • NIH HHS - P40 OD010440(United States)

Role of Anterior Intralaminar Nuclei of Thalamus Projections to Dorsomedial Striatum in Incubation of Methamphetamine Craving.

  • Li X
  • J. Neurosci.
  • 2018 Feb 28

Literature context: 000; Cell Signaling Technology, RRID:AB_10557109) diluted in 2% NHS in PBS-Tx. W


Abstract:

Relapse to methamphetamine (Meth) seeking progressively increases after withdrawal from drug self-administration (incubation of Meth craving). We previously demonstrated a role of dorsomedial striatum (DMS) dopamine D1 receptors (D1Rs) in this incubation. Here, we studied the role of afferent glutamatergic projections into the DMS and local D1R-glutamate interaction in this incubation in male rats. We first measured projection-specific activation on day 30 relapse test by using cholera toxin b (retrograde tracer) + Fos (activity marker) double-labeling in projection areas. Next, we determined the effect of pharmacological reversible inactivation of lateral or medial anterior intralaminar nuclei of thalamus (AIT-L or AIT-M) on incubated Meth seeking on withdrawal day 30. We then used an anatomical asymmetrical disconnection procedure to determine whether an interaction between AIT-L→DMS glutamatergic projections and postsynaptic DMS D1Rs contributes to incubated Meth seeking. We also determined the effect of unilateral inactivation of AIT-L and D1R blockade of DMS on incubated Meth seeking, and the effect of contralateral disconnection of AIT-L→DMS projections on nonincubated Meth seeking on withdrawal day 1. Incubated Meth seeking was associated with selective activation of AIT→DMS projections; other glutamatergic projections to DMS were not activated. AIT-L (but not AIT-M) inactivation or anatomical disconnection of AIT-L→DMS projections decreased incubated Meth seeking. Unilateral inactivation of AIT-L or D1R blockade of the DMS had no effect on incubated Meth craving, and contralateral disconnection of AIT-L→DMS projections had no effect on nonincubated Meth seeking. Our results identify a novel role of AIT-L and AIT-L→DMS glutamatergic projections in incubation of drug craving and drug seeking.SIGNIFICANCE STATEMENT Methamphetamine seeking progressively increases after withdrawal from drug self-administration, a phenomenon termed incubation of methamphetamine craving. We previously found that D1R-mediated dopamine transmission in the dorsomedial striatum plays a critical role in this incubation phenomenon. Here, we used neuroanatomical and neuropharmacological methods in rats to demonstrate that an interaction between the glutamatergic projection from the lateral anterior intralaminar nuclei of the thalamus to the dorsomedial striatum and local dopamine D1 receptors plays a critical role in relapse to methamphetamine seeking after prolonged withdrawal. Our study identified a novel motivation-related thalamostriatal projection critical to relapse to drug seeking.

Funding information:
  • NIAID NIH HHS - L30 AI061932(United States)

The Anterior Insular Cortex→Central Amygdala Glutamatergic Pathway Is Critical to Relapse after Contingency Management.

  • Venniro M
  • Neuron
  • 2017 Oct 11

Literature context: 48S, Cell Signaling Technology; RRID:AB_10557109) diluted 1:8000 in 3% NGS in PB


Abstract:

Despite decades of research on neurobiological mechanisms of psychostimulant addiction, the only effective treatment for many addicts is contingency management, a behavioral treatment that uses alternative non-drug reward to maintain abstinence. However, when contingency management is discontinued, most addicts relapse to drug use. The brain mechanisms underlying relapse after cessation of contingency management are largely unknown, and, until recently, an animal model of this human condition did not exist. Here we used a novel rat model, in which the availability of a mutually exclusive palatable food maintains prolonged voluntary abstinence from intravenous methamphetamine self-administration, to demonstrate that the activation of monosynaptic glutamatergic projections from anterior insular cortex to central amygdala is critical to relapse after the cessation of contingency management. We identified the anterior insular cortex-to-central amygdala projection as a new addiction- and motivation-related projection and a potential target for relapse prevention.

Funding information:
  • Intramural NIH HHS - ZIA DA000434-17()

Brain micro-inflammation at specific vessels dysregulates organ-homeostasis via the activation of a new neural circuit.

  • Arima Y
  • Elife
  • 2017 Aug 15

Literature context: r32) (RRID:AB_10557109, Cell Signaling Technology), co


Abstract:

Impact of stress on diseases including gastrointestinal failure is well-known, but molecular mechanism is not understood. Here we show underlying molecular mechanism using EAE mice. Under stress conditions, EAE caused severe gastrointestinal failure with high-mortality. Mechanistically, autoreactive-pathogenic CD4+ T cells accumulated at specific vessels of boundary area of third-ventricle, thalamus, and dentate-gyrus to establish brain micro-inflammation via stress-gateway reflex. Importantly, induction of brain micro-inflammation at specific vessels by cytokine injection was sufficient to establish fatal gastrointestinal failure. Resulting micro-inflammation activated new neural pathway including neurons in paraventricular-nucleus, dorsomedial-nucleus-of-hypothalamus, and also vagal neurons to cause fatal gastrointestinal failure. Suppression of the brain micro-inflammation or blockage of these neural pathways inhibited the gastrointestinal failure. These results demonstrate direct link between brain micro-inflammation and fatal gastrointestinal disease via establishment of a new neural pathway under stress. They further suggest that brain micro-inflammation around specific vessels could be switch to activate new neural pathway(s) to regulate organ homeostasis.

Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.

  • McCall JG
  • Elife
  • 2017 Jul 14

Literature context: Signaling RRID:AB_10557109 Slice preparation


Abstract:

Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.

Role of Dorsomedial Striatum Neuronal Ensembles in Incubation of Methamphetamine Craving after Voluntary Abstinence.

  • Caprioli D
  • J. Neurosci.
  • 2017 Jan 25

Literature context: chnology; RRID:AB_10557109) and eithe


Abstract:

We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral striatum (DLS) and dorsomedial striatum (DMS) in this incubation. We trained rats to self-administer palatable food pellets (6 d, 6 h/d) and methamphetamine (12 d, 6 h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/d) for 19 d. We used in situ hybridization to measure the colabeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization colabeling results, we tested the causal role of DMS D1 and D2 family receptors, and DMS neuronal ensembles in "incubated" methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively. Methamphetamine seeking was higher after 21 d of voluntary abstinence than after 1 d (incubation of methamphetamine craving). The incubated response was associated with increased Fos expression in DMS but not in DLS; Fos was colabeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21. Results demonstrate a role of DMS dopamine D1 and D2 receptors in the incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation. SIGNIFICANCE STATEMENT: In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we used classical pharmacology, in situ hybridization, immunohistochemistry, and the Daun02 inactivation procedure to demonstrate a critical role of dorsomedial striatum neuronal ensembles in this new form of incubation of drug craving.

AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion.

  • Peng B
  • Endocrinology
  • 2015 Jun 18

Literature context:


Abstract:

GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion.

Funding information:
  • European Research Council - 261063(International)