X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

ANTI-FLAG(R) M2 Affinity Gel antibody

RRID:AB_10063035

Antibody ID

AB_10063035

Target Antigen

ANTI-FLAG(R) M2 Affinity Gel flag®

Proper Citation

(Sigma-Aldrich Cat# A2220, RRID:AB_10063035)

Clonality

unknown

Comments

Vendor recommendations: IgG1

Vendor

Sigma-Aldrich

Cat Num

A2220

SAD-A Promotes Glucose-stimulated Insulin Secretion through Phosphorylation and Inhibition of GDIα in Male Islet β-cells.

  • Nie J
  • Endocrinology
  • 2018 Jun 4

Literature context: 45. RRID:AB_10063035.


Abstract:

Rho GDP-dissociation inhibitor (GDIα) inhibits glucose-stimulated insulin secretion (GSIS) in part by locking Rho GTPases in an inactive GDP-bound form. The onset of GSIS causes phosphorylation of GDIα at Ser174, a critical inhibitory site for GDIα, leading to the release of Rho GTPases and their subsequent activation. However, the kinase regulator(s) that catalyzes the phosphorylation of GDIα in islet β-cells remains elusive. We propose that SAD-A, a member of AMPK-related kinases that promotes GSIS as an effector kinase for incretin signaling, interact with and inhibit GDIα through phosphorylation of Ser174 during the onset GSIS from islet β-cells. Co-immunoprecipitation and phosphorylation analyses were carried out to identify the physical interaction and phosphorylation site of GDIα by SAD-A in the context of glucose-stimulated insulin secretion from INS-1 β-cells and primary islets. We identified GDIα directly binds to SAD-A kinase domain and phosphorylated by SAD-A on Ser174, leading to dissociation of Rho GTPases from GDIα complexes. Accordingly, overexpression of SAD-A significantly stimulated GDIα phosphorylation at Ser174 in response to GSIS, which is dramatically potentiated by GLP-1, an incretin hormone. Conversely, SAD-A deficiency, which is mediated by shRNA transfection in INS-1 cells, significantly attenuated endogenous GDIα phosphorylation at Ser174. Consequently, co-expression of SAD-A completely prevented the inhibitory effect of GDIα on insulin secretion in islets. In summary, glucose and incretin stimulate insulin secretion through the phosphorylation of GDIα at Ser174 by SAD-A which leads to the activation of Rho GTPases, culminating in insulin exocytosis.

Funding information:
  • NIAID NIH HHS - R01 AI0417351(United States)

Capturing the Onset of PRC2-Mediated Repressive Domain Formation.

  • Oksuz O
  • Mol. Cell
  • 2018 Jun 21

Literature context: el Sigma-Aldrich Cat# A2220-5ML RRID:AB_10063035 Lipofectamine 2000 Thermo Fishe


Abstract:

Polycomb repressive complex 2 (PRC2) maintains gene silencing by catalyzing methylation of histone H3 at lysine 27 (H3K27me2/3) within chromatin. By designing a system whereby PRC2-mediated repressive domains were collapsed and then reconstructed in an inducible fashion in vivo, a two-step mechanism of H3K27me2/3 domain formation became evident. First, PRC2 is stably recruited by the actions of JARID2 and MTF2 to a limited number of spatially interacting "nucleation sites," creating H3K27me3-forming Polycomb foci within the nucleus. Second, PRC2 is allosterically activated via its binding to H3K27me3 and rapidly spreads H3K27me2/3 both in cis and in far-cis via long-range contacts. As PRC2 proceeds further from the nucleation sites, its stability on chromatin decreases such that domains of H3K27me3 remain proximal, and those of H3K27me2 distal, to the nucleation sites. This study demonstrates the principles of de novo establishment of PRC2-mediated repressive domains across the genome.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/G003033/1(United Kingdom)

Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in Arabidopsis.

  • Huang X
  • Elife
  • 2018 Jun 21

Literature context:


Abstract:

Shade avoidance syndrome enables shaded plants to grow and compete effectively against their neighbors. In Arabidopsis, the shade-induced de-phosphorylation of the transcription factor PIF7 (PHYTOCHROME-INTERACTING FACTOR 7) is the key event linking light perception to stem elongation. However, the mechanism through which phosphorylation regulates the activity of PIF7 is unclear. Here, we show that shade light induces the de-phosphorylation and nuclear accumulation of PIF7. Phosphorylation-resistant site mutations in PIF7 result in increased nuclear localization and shade-induced gene expression, and consequently augment hypocotyl elongation. PIF7 interacts with 14-3-3 proteins. Blocking the interaction between PIF7 and 14-3-3 proteins or reducing the expression of 14-3-3 proteins accelerates shade-induced nuclear localization and de-phosphorylation of PIF7, and enhances the shade phenotype. By contrast, the 14-3-3 overexpressing line displays an attenuated shade phenotype. These studies demonstrate a phosphorylation-dependent translocation of PIF7 when plants are in shade and a novel mechanism involving 14-3-3 proteins, mediated by the retention of PIF7 in the cytoplasm that suppresses the shade response.

Funding information:
  • National Key Research and Development Program of China - 2017YFA0503800()
  • National Natural Science Foundation of China - 31470374()
  • National Natural Science Foundation of China - 31500973()
  • NIAID NIH HHS - AI059881(United States)

Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain.

  • Lin G
  • Cell Metab.
  • 2018 Jun 7

Literature context: -Aldrich RRID:AB_10063035 EZview Red Anti-HA Affinity Gel


Abstract:

Mutations in PLA2G6 (PARK14) cause neurodegenerative disorders in humans, including autosomal recessive neuroaxonal dystrophy and early-onset parkinsonism. We show that loss of iPLA2-VIA, the fly homolog of PLA2G6, reduces lifespan, impairs synaptic transmission, and causes neurodegeneration. Phospholipases typically hydrolyze glycerol phospholipids, but loss of iPLA2-VIA does not affect the phospholipid composition of brain tissue but rather causes an elevation in ceramides. Reducing ceramides with drugs, including myriocin or desipramine, alleviates lysosomal stress and suppresses neurodegeneration. iPLA2-VIA binds the retromer subunits Vps35 and Vps26 and enhances retromer function to promote protein and lipid recycling. Loss of iPLA2-VIA impairs retromer function, leading to a progressive increase in ceramide. This induces a positive feedback loop that affects membrane fluidity and impairs retromer function and neuronal function. Similar defects are observed upon loss of vps26 or vps35 or overexpression of α-synuclein, indicating that these defects may be common in Parkinson disease.

Funding information:
  • NCI NIH HHS - R01 CA130893(United States)

A Family of Vertebrate-Specific Polycombs Encoded by the LCOR/LCORL Genes Balance PRC2 Subtype Activities.

  • Conway E
  • Mol. Cell
  • 2018 May 3

Literature context: finity gel Sigma-Aldrich A2220; RRID:AB_10063035 Anti-SUZ12 Cell Signaling Techn


Abstract:

The polycomb repressive complex 2 (PRC2) consists of core subunits SUZ12, EED, RBBP4/7, and EZH1/2 and is responsible for mono-, di-, and tri-methylation of lysine 27 on histone H3. Whereas two distinct forms exist, PRC2.1 (containing one polycomb-like protein) and PRC2.2 (containing AEBP2 and JARID2), little is known about their differential functions. Here, we report the discovery of a family of vertebrate-specific PRC2.1 proteins, "PRC2 associated LCOR isoform 1" (PALI1) and PALI2, encoded by the LCOR and LCORL gene loci, respectively. PALI1 promotes PRC2 methyltransferase activity in vitro and in vivo and is essential for mouse development. Pali1 and Aebp2 define mutually exclusive, antagonistic PRC2 subtypes that exhibit divergent H3K27-tri-methylation activities. The balance of these PRC2.1/PRC2.2 activities is required for the appropriate regulation of polycomb target genes during differentiation. PALI1/2 potentially link polycombs with transcriptional co-repressors in the regulation of cellular identity during development and in cancer.

Funding information:
  • NHLBI NIH HHS - R01 HL095783-03(United States)

The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming.

  • Tang HW
  • Cell Metab.
  • 2018 May 1

Literature context: RRID:AB_10063035 Anti-HA agarose Sigma A2095; RR


Abstract:

Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism.

Funding information:
  • NINDS NIH HHS - NS050248(United States)

AIDA Selectively Mediates Downregulation of Fat Synthesis Enzymes by ERAD to Retard Intestinal Fat Absorption and Prevent Obesity.

  • Luo H
  • Cell Metab.
  • 2018 Apr 3

Literature context: -Aldrich Cat#A2220; RRID:AB_10063035 ATF4 Proteintech Group Cat#1083


Abstract:

The efficiency of intestinal absorption of dietary fat constitutes a primary determinant accounting for individual vulnerability to obesity. However, how fat absorption is controlled and contributes to obesity remains unclear. Here, we show that inhibition of endoplasmic-reticulum-associated degradation (ERAD) increases the abundance of triacylglycerol synthesis enzymes and fat absorption in small intestine. The C2-domain protein AIDA acts as an essential factor for the E3-ligase HRD1 of ERAD to downregulate rate-limiting acyltransferases GPAT3, MOGAT2, and DGAT2. Aida-/- mice, when grown in a thermal-neutral condition or fed high-fat diet, display increased intestinal fatty acid re-esterification, circulating and tissue triacylglycerol, accompanied with severely increased adiposity without enhancement of adipogenesis. Intestine-specific knockout of Aida largely phenocopies its whole-body knockout, strongly indicating that increased intestinal TAG synthesis is a primary impetus to obesity. The AIDA-mediated ERAD system may thus represent an anti-thrifty mechanism impinging on the enzymes for intestinal fat absorption and systemic fat storage.

Funding information:
  • NCI NIH HHS - R01 CA064140(United States)

lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer.

  • Wang Z
  • Cancer Cell
  • 2018 Apr 9

Literature context: -Aldrich Cat# A2220; RRID:AB_10063035 Goat anti-Mouse IgG (H+L) Secon


Abstract:

We characterized the epigenetic landscape of genes encoding long noncoding RNAs (lncRNAs) across 6,475 tumors and 455 cancer cell lines. In stark contrast to the CpG island hypermethylation phenotype in cancer, we observed a recurrent hypomethylation of 1,006 lncRNA genes in cancer, including EPIC1 (epigenetically-induced lncRNA1). Overexpression of EPIC1 is associated with poor prognosis in luminal B breast cancer patients and enhances tumor growth in vitro and in vivo. Mechanistically, EPIC1 promotes cell-cycle progression by interacting with MYC through EPIC1's 129-283 nt region. EPIC1 knockdown reduces the occupancy of MYC to its target genes (e.g., CDKN1A, CCNA2, CDC20, and CDC45). MYC depletion abolishes EPIC1's regulation of MYC target and luminal breast cancer tumorigenesis in vitro and in vivo.

Funding information:
  • Intramural NIH HHS - Z01 ES100485(United States)

IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

  • Yoneyama Y
  • Elife
  • 2018 Apr 11

Literature context: a-Aldrich Sigma-Aldrich: A2220; RRID:AB_10063035


Abstract:

Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling.

Funding information:
  • Austrian Research Promotion Agency (FFG) - 850681()
  • Japan Agency for Medical Research and Development and Ministry of Education, Culture, Sports, Science, and Technology - Platform Project for Supporting in Drug Discovery and Life Scien()
  • Japan Society for the Promotion of Science - 15K18766()
  • Ministry of Education, Culture, Sports, Science, and Technology - The Targeted Proteins Research Program (TPRP)()
  • NIGMS NIH HHS - 2T32GM008646(United States)
  • University of Applied Sciences Upper Austria and the Center for Technological Innovation in Medicine (TIMed Center) - Project GlucoSTAR()

Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms.

  • Tan KL
  • Dev. Cell
  • 2018 Apr 23

Literature context: a-Aldrich CAT #A2220; RRID:AB_10063035 EZviewâ„¢ Red Anti-HA Affinity Ge


Abstract:

Nuclei are actively positioned and anchored to the cytoskeleton via the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex. We identified mutations in the Parkin-like E3 ubiquitin ligase Ariadne-1 (Ari-1) that affect the localization and distribution of LINC complex members in Drosophila. ari-1 mutants exhibit nuclear clustering and morphology defects in larval muscles. We show that Ari-1 mono-ubiquitinates the core LINC complex member Koi. Surprisingly, we discovered functional redundancy between Parkin and Ari-1: increasing Parkin expression rescues ari-1 mutant phenotypes and vice versa. We further show that rare variants in the human homolog of ari-1 (ARIH1) are associated with thoracic aortic aneurysms and dissections, conditions resulting from smooth muscle cell (SMC) dysfunction. Human ARIH1 rescues fly ari-1 mutant phenotypes, whereas human variants found in patients fail to do so. In addition, SMCs obtained from patients display aberrant nuclear morphology. Hence, ARIH1 is critical in anchoring myonuclei to the cytoskeleton.

Funding information:
  • Intramural NIH HHS - (United States)

Cell-Cycle Modulation of Transcription Termination Factor Sen1.

  • Mischo HE
  • Mol. Cell
  • 2018 Apr 19

Literature context: ty gel Sigma-Aldrich Cat# A2220 RRID:AB_10063035 Chemicals, Peptides, and Recomb


Abstract:

Many non-coding transcripts (ncRNA) generated by RNA polymerase II in S. cerevisiae are terminated by the Nrd1-Nab3-Sen1 complex. However, Sen1 helicase levels are surprisingly low compared with Nrd1 and Nab3, raising questions regarding how ncRNA can be terminated in an efficient and timely manner. We show that Sen1 levels increase during the S and G2 phases of the cell cycle, leading to increased termination activity of NNS. Overexpression of Sen1 or failure to modulate its abundance by ubiquitin-proteasome-mediated degradation greatly decreases cell fitness. Sen1 toxicity is suppressed by mutations in other termination factors, and NET-seq analysis shows that its overexpression leads to a decrease in ncRNA production and altered mRNA termination. We conclude that Sen1 levels are carefully regulated to prevent aberrant termination. We suggest that ncRNA levels and coding gene transcription termination are modulated by Sen1 to fulfill critical cell cycle-specific functions.

Funding information:
  • Medical Research Council - BB/F007590/1(United Kingdom)
  • NIGMS NIH HHS - R01 HG007173()
  • Wellcome Trust - R01 GM056663()

Transcriptional Regulation of the Warburg Effect in Cancer by SIX1.

  • Li L
  • Cancer Cell
  • 2018 Mar 12

Literature context: ich Cat# A2220; RRID:AB_10063035 anti-GAPDH Sigma-Aldrich Cat# G


Abstract:

Aerobic glycolysis (the Warburg effect) facilitates tumor growth, and drugs targeting aerobic glycolysis are being developed. However, how the Warburg effect is directly regulated is largely unknown. Here we show that transcription factor SIX1 directly increases the expression of many glycolytic genes, promoting the Warburg effect and tumor growth in vitro and in vivo. SIX1 regulates glycolysis through HBO1 and AIB1 histone acetyltransferases. Cancer-related SIX1 mutation increases its ability to promote aerobic glycolysis and tumor growth. SIX1 glycolytic function is directly repressed by microRNA-548a-3p, which is downregulated, inversely correlates with SIX1, and is a good predictor of prognosis in breast cancer patients. Thus, the microRNA-548a-3p/SIX1 axis strongly links aerobic glycolysis to carcinogenesis and may become a promising cancer therapeutic target.

Funding information:
  • NHLBI NIH HHS - HL084312(United States)

Cand1-Mediated Adaptive Exchange Mechanism Enables Variation in F-Box Protein Expression.

  • Liu X
  • Mol. Cell
  • 2018 Mar 1

Literature context: ody Sigma Cat # A2220, RRID:AB_10063035 EZview(TM) Red anti-HA Affinity


Abstract:

Skp1⋅Cul1⋅F-box (SCF) ubiquitin ligase assembly is regulated by the interplay of substrate binding, reversible Nedd8 conjugation on Cul1, and the F-box protein (FBP) exchange factors Cand1 and Cand2. Detailed investigations into SCF assembly and function in reconstituted systems and Cand1/2 knockout cells informed the development of a mathematical model for how dynamical assembly of SCF complexes is controlled and how this cycle is coupled to degradation of an SCF substrate. Simulations predicted an unanticipated hypersensitivity of Cand1/2-deficient cells to FBP expression levels, which was experimentally validated. Together, these and prior observations lead us to propose the adaptive exchange hypothesis, which posits that regulation of the koff of an FBP from SCF by the actions of substrate, Nedd8, and Cand1 molds the cellular repertoire of SCF complexes and that the plasticity afforded by this exchange mechanism may enable large variations in FBP expression during development and in FBP gene number during evolution.

Funding information:
  • NIGMS NIH HHS - F32 GM112308()
  • NIGMS NIH HHS - R01 GM065997()
  • Wellcome Trust - 092076(United Kingdom)

Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal.

  • Wen J
  • Mol. Cell
  • 2018 Mar 15

Literature context: M2 affinity gelSigma-AldrichCat#A2220Chemicals, Peptides, and Recombi


Abstract:

N6-methyladenosine (m6A) is an abundant modification in eukaryotic mRNA, regulating mRNA dynamics by influencing mRNA stability, splicing, export, and translation. However, the precise m6A regulating machinery still remains incompletely understood. Here we demonstrate that ZC3H13, a zinc-finger protein, plays an important role in modulating RNA m6A methylation in the nucleus. We show that knockdown of Zc3h13 in mouse embryonic stem cell significantly decreases global m6A level on mRNA. Upon Zc3h13 knockdown, a great majority of WTAP, Virilizer, and Hakai translocate to the cytoplasm, suggesting that Zc3h13 is required for nuclear localization of the Zc3h13-WTAP-Virilizer-Hakai complex, which is important for RNA m6A methylation. Finally, Zc3h13 depletion, as does WTAP, Virilizer, or Hakai, impairs self-renewal and triggers mESC differentiation. Taken together, our findings demonstrate that Zc3h13 plays a critical role in anchoring WTAP, Virilizer, and Hakai in the nucleus to facilitate m6A methylation and to regulate mESC self-renewal.

Funding information:
  • NHGRI NIH HHS - R01 HG008688()
  • NIGMS NIH HHS - GM35463(United States)

A Tyrosine Phosphorylation Cycle Regulates Fungal Activation of a Plant Receptor Ser/Thr Kinase.

  • Liu J
  • Cell Host Microbe
  • 2018 Feb 14

Literature context: Sigma Cat.#A2220; RRID:AB_10063035 Rabbit Anti-pY428 pAb This pape


Abstract:

Plants initiate immunity by cell-surface pattern-recognition receptors (PRRs), which perceive non-self molecules. PRRs are predominantly receptor serine/threonine (Ser/Thr) kinases that are evolutionarily related to animal interleukin-1 receptor-associated kinase (IRAK)/Pelle-soluble kinases. However, how the activity of these receptor kinases is modulated remains poorly understood. We report that the Arabidopsis PRR chitin elicitor receptor kinase 1 (CERK1) is autophosphorylated in unstimulated cells at tyrosine428 (Tyr428), a modification that is required for CERK1 activation upon binding to the fungal cell wall component chitin. Upon chitin activation, CERK1 recruits the CERK1-interacting protein phosphatase 1 (CIPP1), a predicted Ser/Thr phosphatase, to dephosphorylate Tyr428 and dampen CERK1 signaling. CIPP1 subsequently dissociates from Tyr428-dephosphorylated CERK1, allowing CERK1 to regain Tyr428 autophosphorylation and return to a standby state. This work sheds light onto plant chitin signaling and shows that a receptor kinase and phosphatase can coordinately regulate signal transduction of a receptor kinase through a phosphorylation cycle.

Funding information:
  • NIAID NIH HHS - R01 AI066109(United States)

Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6.

  • Rothé B
  • Structure
  • 2018 Feb 6

Literature context: duced in mouse) Sigma A2220; RRID:AB_10063035 Bacterial and Virus Strains


Abstract:

Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions.

Funding information:
  • NIGMS NIH HHS - GM050942(United States)

A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response.

  • Hoshii T
  • Cell
  • 2018 Feb 22

Literature context: ffinity Gel Sigma Cat#A2220, RRID:AB_10063035 Rabbit polyclonal anti-Cyclin K


Abstract:

MLL/SET methyltransferases catalyze methylation of histone 3 lysine 4 and play critical roles in development and cancer. We assessed MLL/SET proteins and found that SETD1A is required for survival of acute myeloid leukemia (AML) cells. Mutagenesis studies and CRISPR-Cas9 domain screening show the enzymatic SET domain is not necessary for AML cell survival but that a newly identified region termed the "FLOS" (functional location on SETD1A) domain is indispensable. FLOS disruption suppresses DNA damage response genes and induces p53-dependent apoptosis. The FLOS domain acts as a cyclin-K-binding site that is required for chromosomal recruitment of cyclin K and for DNA-repair-associated gene expression in S phase. These data identify a connection between the chromatin regulator SETD1A and the DNA damage response that is independent of histone methylation and suggests that targeting SETD1A and cyclin K complexes may represent a therapeutic opportunity for AML and, potentially, for other cancers.

Funding information:
  • NICHD NIH HHS - R01 HD070056-01(United States)

Serine is the major residue for ADP-ribosylation upon DNA damage.

  • Palazzo L
  • Elife
  • 2018 Feb 26

Literature context: M2 agarose affinity gel (A2220, RRID:AB_10063035) and anti-Flag HRP-conjugated (


Abstract:

Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that synthesise ADP-ribosylation (ADPr), a reversible modification of proteins that regulates many different cellular processes. Several mammalian PARPs are known to regulate the DNA damage response, but it is not clear which amino acids in proteins are the primary ADPr targets. Previously, we reported that ARH3 reverses the newly discovered type of ADPr (ADPr on serine residues; Ser-ADPr) and developed tools to analyse this modification (Fontana et al., 2017). Here, we show that Ser-ADPr represents the major fraction of ADPr synthesised after DNA damage in mammalian cells and that globally Ser-ADPr is dependent on HPF1, PARP1 and ARH3. In the absence of HPF1, glutamate/aspartate becomes the main target residues for ADPr. Furthermore, we describe a method for site-specific validation of serine ADP-ribosylated substrates in cells. Our study establishes serine as the primary form of ADPr in DNA damage signalling.

Funding information:
  • Associazione Italiana per la Ricerca sul Cancro - 14895()
  • Cancer Research UK - C35050/A22284()
  • Deutsche Forschungsgemeinschaft - EXC 229()
  • European Research Council - 281739()
  • Horizon 2020 Framework Programme - 281739()
  • Horizon 2020 Framework Programme - 657501()
  • Wellcome - 101794()
  • Wellcome Trust - 101794()
  • Wellcome Trust - WT087675MA(United Kingdom)

SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a.

  • Jing H
  • Elife
  • 2017 Dec 14

Literature context: RRID:AB_10063035 10 μL slurry/1 mg total protein


Abstract:

Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously under-studied protein post-translational modification. Sirtuin 2 (SIRT2), one of the mammalian nicotinamide adenine dinucleotide (NAD)-dependent lysine deacylases, catalyzes the removal of fatty acylation from K-Ras4a. We further demonstrate that SIRT2-mediated lysine defatty-acylation promotes endomembrane localization of K-Ras4a, enhances its interaction with A-Raf, and thus promotes cellular transformation. Our study identifies lysine fatty acylation as a previously unknown regulatory mechanism for the Ras family of GTPases that is distinct from cysteine fatty acylation. These findings highlight the biological significance of lysine fatty acylation and sirtuin-catalyzed protein lysine defatty-acylation.

Funding information:
  • NCRR NIH HHS - S10 RR025502()
  • NIAID NIH HHS - R03 AI078348(United States)
  • NIGMS NIH HHS - R01 GM121540()
  • NIH HHS - S10 OD017992()

AP-1 Transcription Factors and the BAF Complex Mediate Signal-Dependent Enhancer Selection.

  • Vierbuchen T
  • Mol. Cell
  • 2017 Dec 21

Literature context: Sigma A2220-1mL lot SLBR7667V; RRID:AB_10063035 Rabbit anti-Arid1a Cell Signali


Abstract:

Enhancer elements are genomic regulatory sequences that direct the selective expression of genes so that genetically identical cells can differentiate and acquire the highly specialized forms and functions required to build a functioning animal. To differentiate, cells must select from among the ∼106 enhancers encoded in the genome the thousands of enhancers that drive the gene programs that impart their distinct features. We used a genetic approach to identify transcription factors (TFs) required for enhancer selection in fibroblasts. This revealed that the broadly expressed, growth-factor-inducible TFs FOS/JUN (AP-1) play a central role in enhancer selection. FOS/JUN selects enhancers together with cell-type-specific TFs by collaboratively binding to nucleosomal enhancers and recruiting the SWI/SNF (BAF) chromatin remodeling complex to establish accessible chromatin. These experiments demonstrate how environmental signals acting via FOS/JUN and BAF coordinate with cell-type-specific TFs to select enhancer repertoires that enable differentiation during development.

Funding information:
  • NCI NIH HHS - CA81534(United States)
  • NCI NIH HHS - K99 CA197640()
  • NINDS NIH HHS - R01 NS048276()
  • NINDS NIH HHS - R37 NS028829()

Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development.

  • Li J
  • Neuron
  • 2017 Nov 15

Literature context: -Aldrich Cat#: A2220, RRID:AB_10063035 DNA-In Neuro transfection reage


Abstract:

In the brain, many types of interneurons make functionally diverse inhibitory synapses onto principal neurons. Although numerous molecules have been identified to function in inhibitory synapse development, it remains unknown whether there is a unifying mechanism for development of diverse inhibitory synapses. Here we report a general molecular mechanism underlying hippocampal inhibitory synapse development. In developing neurons, the establishment of GABAergic transmission depends on Neuroligin 2 (NL2), a synaptic cell adhesion molecule (CAM). During maturation, inhibitory synapse development requires both NL2 and Slitrk3 (ST3), another CAM. Importantly, NL2 and ST3 interact with nanomolar affinity through their extracellular domains to synergistically promote synapse development. Selective perturbation of the NL2-ST3 interaction impairs inhibitory synapse development with consequent disruptions in hippocampal network activity and increased seizure susceptibility. Our findings reveal how unique postsynaptic CAMs work in concert to control synaptogenesis and establish a general framework for GABAergic synapse development.

Multiplexed Thiol Reactivity Profiling for Target Discovery of Electrophilic Natural Products.

  • Tian C
  • Cell Chem Biol
  • 2017 Nov 16

Literature context: beads Sigma-Aldrich Cat# A2220; RRID:AB_10063035 Alexa-488-conjugated anti-mouse


Abstract:

Electrophilic groups, such as Michael acceptors, expoxides, are common motifs in natural products (NPs). Electrophilic NPs can act through covalent modification of cysteinyl thiols on functional proteins, and exhibit potent cytotoxicity and anti-inflammatory/cancer activities. Here we describe a new chemoproteomic strategy, termed multiplexed thiol reactivity profiling (MTRP), and its use in target discovery of electrophilic NPs. We demonstrate the utility of MTRP by identifying cellular targets of gambogic acid, an electrophilic NP that is currently under evaluation in clinical trials as anticancer agent. Moreover, MTRP enables simultaneous comparison of seven structurally diversified α,β-unsaturated γ-lactones, which provides insights into the relative proteomic reactivity and target preference of diverse structural scaffolds coupled to a common electrophilic motif and reveals various potential druggable targets with liganded cysteines. We anticipate that this new method for thiol reactivity profiling in a multiplexed manner will find broad application in redox biology and drug discovery.

NOTCH2 Hajdu-Cheney Mutations Escape SCFFBW7-Dependent Proteolysis to Promote Osteoporosis.

  • Fukushima H
  • Mol. Cell
  • 2017 Nov 16

Literature context: ldrich Cat# A-2220; RRID:AB_10063035 Anti-HA agarose beads Sigma-Ald


Abstract:

Hajdu-Cheney syndrome (HCS), a rare autosomal disorder caused by heterozygous mutations in NOTCH2, is clinically characterized by acro-osteolysis, severe osteoporosis, short stature, neurological symptoms, cardiovascular defects, and polycystic kidneys. Recent studies identified that aberrant NOTCH2 signaling and consequent osteoclast hyperactivity are closely associated with the bone-related disorder pathogenesis, but the exact molecular mechanisms remain unclear. Here, we demonstrate that sustained osteoclast activity is largely due to accumulation of NOTCH2 carrying a truncated C terminus that escapes FBW7-mediated ubiquitination and degradation. Mice with osteoclast-specific Fbw7 ablation revealed osteoporotic phenotypes reminiscent of HCS, due to elevated Notch2 signaling. Importantly, administration of Notch inhibitors in Fbw7 conditional knockout mice alleviated progressive bone resorption. These findings highlight the molecular basis of HCS pathogenesis and provide clinical insights into potential targeted therapeutic strategies for skeletal disorders associated with the aberrant FBW7/NOTCH2 pathway as observed in patients with HCS.

Funding information:
  • NIMH NIH HHS - R01 MH086920(United States)

The Elongation Factor Spt6 Maintains ESC Pluripotency by Controlling Super-Enhancers and Counteracting Polycomb Proteins.

  • Wang AH
  • Mol. Cell
  • 2017 Oct 19

Literature context: A2220; RRID:AB_10063035 Glutathione Sepharose 4B GE Hea


Abstract:

Spt6 coordinates nucleosome dis- and re-assembly, transcriptional elongation, and mRNA processing. Here, we report that depleting Spt6 in embryonic stem cells (ESCs) reduced expression of pluripotency factors, increased expression of cell-lineage-affiliated developmental regulators, and induced cell morphological and biochemical changes indicative of ESC differentiation. Selective downregulation of pluripotency factors upon Spt6 depletion may be mechanistically explained by its enrichment at ESC super-enhancers, where Spt6 controls histone H3K27 acetylation and methylation and super-enhancer RNA transcription. In ESCs, Spt6 interacted with the PRC2 core subunit Suz12 and prevented H3K27me3 accumulation at ESC super-enhancers and associated promoters. Biochemical as well as functional experiments revealed that Spt6 could compete for binding of the PRC2 methyltransferase Ezh2 to Suz12 and reduce PRC2 chromatin engagement. Thus, in addition to serving as a histone chaperone and transcription elongation factor, Spt6 counteracts repression by opposing H3K27me3 deposition at critical genomic regulatory regions.

Funding information:
  • Intramural NIH HHS - ZIA AR041126-17()

The Intellectual Disability and Schizophrenia Associated Transcription Factor TCF4 Is Regulated by Neuronal Activity and Protein Kinase A.

  • Sepp M
  • J. Neurosci.
  • 2017 Oct 25

Literature context: (Sigma-Aldrich catalog #A2220, RRID:AB_10063035). ChIPs were performed as descr


Abstract:

Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.

Funding information:
  • NIMH NIH HHS - R01 MH110487()
  • NIMH NIH HHS - R56 MH104593()

Assembly of the WHIP-TRIM14-PPP6C Mitochondrial Complex Promotes RIG-I-Mediated Antiviral Signaling.

  • Tan P
  • Mol. Cell
  • 2017 Oct 19

Literature context: Sigma Cat#: A2220; RRID:AB_10063035 WB: Anti-β-actin Ab Santa Cruz


Abstract:

Mitochondrial antiviral signaling platform protein (MAVS) acts as a central hub for RIG-I receptor proximal signal propagation. However, key components in the assembly of the MAVS mitochondrial platform that promote RIG-I mitochondrial localization and optimal activation are still largely undefined. Employing pooled RNAi and yeast two-hybrid screenings, we report that the mitochondrial adaptor protein tripartite motif (TRIM)14 provides a docking platform for the assembly of the mitochondrial signaling complex required for maximal activation of RIG-I-mediated signaling, consisting of WHIP and protein phosphatase PPP6C. Following viral infection, the ubiquitin-binding domain in WHIP bridges RIG-I with MAVS by binding to polyUb chains of RIG-I at lysine 164. The ATPase domain in WHIP contributes to stabilization of the RIG-I-dsRNA interaction. Moreover, phosphatase PPP6C is responsible for RIG-I dephosphorylation. Together, our findings define the WHIP-TRIM14-PPP6C mitochondrial signalosome required for RIG-I-mediated innate antiviral immunity.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Ribosome Collision Is Critical for Quality Control during No-Go Decay.

  • Simms CL
  • Mol. Cell
  • 2017 Oct 19

Literature context: Cat#: A2220; RRID:AB_10063035 Chemicals, Peptides, and Recomb


Abstract:

No-go decay (NGD) is a eukaryotic quality control mechanism that evolved to cope with translational arrests. The process is characterized by an endonucleolytic cleavage near the stall sequence, but the mechanistic details are unclear. Our analysis of cleavage sites indicates that cleavage requires multiple ribosomes on the mRNA. We also show that reporters harboring stall sequences near the initiation codon, which cannot accommodate multiple ribosomes, are not subject to NGD. Consistent with our model, we uncover an inverse correlation between ribosome density per mRNA and cleavage efficiency. Furthermore, promoting global ribosome collision in vivo resulted in ubiquitination of ribosomal proteins, suggesting that collision is sensed by the cell to initiate downstream quality control processes. Collectively, our data suggest that NGD and subsequent quality control are triggered by ribosome collision. This model provides insight into the regulation of quality control processes and the manner by which they reduce off-target effects.

Site-specific monoubiquitination downregulates Rab5 by disrupting effector binding and guanine nucleotide conversion.

  • Shin D
  • Elife
  • 2017 Oct 2

Literature context: -M2-affinity gel (A2220, Sigma, RRID:AB_10063035) and analyzed by immunoblotting


Abstract:

Rab GTPases, which are involved in intracellular trafficking pathways, have recently been reported to be ubiquitinated. However, the functions of ubiquitinated Rab proteins remain unexplored. Here we show that Rab5 is monoubiquitinated on K116, K140, and K165. Upon co-transfection with ubiquitin, Rab5 exhibited abnormalities in endosomal localization and EGF-induced EGF receptor degradation. Rab5 K140R and K165R mutants restored these abnormalities, whereas K116R did not. We derived structural models of individual monoubiquitinated Rab5 proteins (mUbRab5s) by solution scattering and observed different conformational flexibilities in a site-specific manner. Structural analysis combined with biochemical data revealed that interactions with downstream effectors were impeded in mUbRab5K140, whereas GDP release and GTP loading activities were altered in mUbRab5K165. By contrast, mUbRab5K116 apparently had no effect. We propose a regulatory mechanism of Rab5 where monoubiquitination downregulates effector recruitment and GDP/GTP conversion in a site-specific manner.

Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers.

  • Taglialatela A
  • Mol. Cell
  • 2017 Oct 19

Literature context: ty gel Sigma-Aldrich Cat#A2220; RRID:AB_10063035 FLAG peptide Sigma-Aldrich Cat#


Abstract:

To ensure the completion of DNA replication and maintenance of genome integrity, DNA repair factors protect stalled replication forks upon replication stress. Previous studies have identified a critical role for the tumor suppressors BRCA1 and BRCA2 in preventing the degradation of nascent DNA by the MRE11 nuclease after replication stress. Here we show that depletion of SMARCAL1, a SNF2-family DNA translocase that remodels stalled forks, restores replication fork stability and reduces the formation of replication stress-induced DNA breaks and chromosomal aberrations in BRCA1/2-deficient cells. In addition to SMARCAL1, other SNF2-family fork remodelers, including ZRANB3 and HLTF, cause nascent DNA degradation and genomic instability in BRCA1/2-deficient cells upon replication stress. Our observations indicate that nascent DNA degradation in BRCA1/2-deficient cells occurs as a consequence of MRE11-dependent nucleolytic processing of reversed forks generated by fork remodelers. These studies provide mechanistic insights into the processes that cause genome instability in BRCA1/2-deficient cells.

Funding information:
  • NCI NIH HHS - R01 CA197774()

Slp1-Emp65: A Guardian Factor that Protects Folding Polypeptides from Promiscuous Degradation.

  • Zhang S
  • Cell
  • 2017 Oct 5

Literature context: -Aldrich Cat# A2220-1ML; RRID:AB_10063035 Mouse monoclonal anti-HA.11 Clo


Abstract:

Newly synthesized proteins engage molecular chaperones that assist folding. Their progress is monitored by quality control systems that target folding errors for degradation. Paradoxically, chaperones that promote folding also direct unfolded polypeptides for degradation. Hence, a mechanism was previously hypothesized that prevents the degradation of actively folding polypeptides. In this study, we show that a conserved endoplasmic reticulum (ER) membrane protein complex, consisting of Slp1 and Emp65 proteins, performs this function in the ER lumen. The complex binds unfolded proteins and protects them from degradation during folding. In its absence, approximately 20%-30% of newly synthesized proteins that could otherwise fold are degraded. Although the Slp1-Emp65 complex hosts a broad range of clients, it is specific for soluble proteins. Taken together, these studies demonstrate the vulnerability of newly translated, actively folding polypeptides and the discovery of a new proteostasis functional class we term "guardian" that protects them from degradation.

The Ground State and Evolution of Promoter Region Directionality.

  • Jin Y
  • Cell
  • 2017 Aug 24

Literature context: y gel Sigma-Aldrich Cat# A2220; RRID:AB_10063035 Rabbit polyclonal anti-Sua7 (TF


Abstract:

Eukaryotic promoter regions are frequently divergently transcribed in vivo, but it is unknown whether the resultant antisense RNAs are a mechanistic by-product of RNA polymerase II (Pol II) transcription or biologically meaningful. Here, we use a functional evolutionary approach that involves nascent transcript mapping in S. cerevisiae strains containing foreign yeast DNA. Promoter regions in foreign environments lose the directionality they have in their native species. Strikingly, fortuitous promoter regions arising in foreign DNA produce equal transcription in both directions, indicating that divergent transcription is a mechanistic feature that does not imply a function for these transcripts. Fortuitous promoter regions arising during evolution promote bidirectional transcription and over time are purged through mutation or retained to enable new functionality. Similarly, human transcription is more bidirectional at newly evolved enhancers and promoter regions. Thus, promoter regions are intrinsically bidirectional and are shaped by evolution to bias transcription toward coding versus non-coding RNAs.

Funding information:
  • NHGRI NIH HHS - R01 HG007173()
  • NIGMS NIH HHS - R01 GM030186()
  • NIGMS NIH HHS - R01 GM117333()

SNX16 Regulates the Recycling of E-Cadherin through a Unique Mechanism of Coordinated Membrane and Cargo Binding.

  • Xu J
  • Structure
  • 2017 Aug 1

Literature context: t: A2220; RRID:AB_10063035 HA-Tag (C2


Abstract:

E-Cadherin is a major component of adherens junctions on cell surfaces. SNX16 is a unique member of sorting nexins that contains a coiled-coil (CC) domain downstream of the PX domain. We report here that SNX16 regulates the recycling trafficking of E-cadherin. We solved the crystal structure of PX-CC unit of SNX16 and revealed a unique shear shaped homodimer. We identified a novel PI3P binding pocket in SNX16 that consists of both the PX and the CC domains. Surprisingly, we showed that the PPII/α2 loop, which is generally regarded as a membrane insertion loop in PX family proteins, is involved in the E-cadherin binding with SNX16. We then proposed a multivalent membrane binding model for SNX16. Our study postulates a new mechanism for coordinated membrane binding and cargo binding for SNX family proteins in general, and provide novel insights into recycling trafficking of E-cadherin.

Mobilization of LINE-1 retrotransposons is restricted by Tex19.1 in mouse embryonic stem cells.

  • MacLennan M
  • Elife
  • 2017 Aug 14

Literature context: y gel (Sigma-Aldrich Cat# A2220 RRID:AB_10063035), and rotated at 4°C for 1 hr.


Abstract:

Mobilization of retrotransposons to new genomic locations is a significant driver of mammalian genome evolution, but these mutagenic events can also cause genetic disorders. In humans, retrotransposon mobilization is mediated primarily by proteins encoded by LINE-1 (L1) retrotransposons, which mobilize in pluripotent cells early in development. Here we show that TEX19.1, which is induced by developmentally programmed DNA hypomethylation, can directly interact with the L1-encoded protein L1-ORF1p, stimulate its polyubiquitylation and degradation, and restrict L1 mobilization. We also show that TEX19.1 likely acts, at least in part, through promoting the activity of the E3 ubiquitin ligase UBR2 towards L1-ORF1p. Moreover, loss of Tex19.1 increases L1-ORF1p levels and L1 mobilization in pluripotent mouse embryonic stem cells, implying that Tex19.1 prevents de novo retrotransposition in the pluripotent phase of the germline cycle. These data show that post-translational regulation of L1 retrotransposons plays a key role in maintaining trans-generational genome stability in mammals.

mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT.

  • Gu Y
  • Mol. Cell
  • 2017 Jul 6

Literature context: at#A2220; RRID:AB_10063035 Rabbit Mon


Abstract:

Mutations in cancer reprogram amino acid metabolism to drive tumor growth, but the molecular mechanisms are not well understood. Using an unbiased proteomic screen, we identified mTORC2 as a critical regulator of amino acid metabolism in cancer via phosphorylation of the cystine-glutamate antiporter xCT. mTORC2 phosphorylates serine 26 at the cytosolic N terminus of xCT, inhibiting its activity. Genetic inhibition of mTORC2, or pharmacologic inhibition of the mammalian target of rapamycin (mTOR) kinase, promotes glutamate secretion, cystine uptake, and incorporation into glutathione, linking growth factor receptor signaling with amino acid uptake and utilization. These results identify an unanticipated mechanism regulating amino acid metabolism in cancer, enabling tumor cells to adapt to changing environmental conditions.

Funding information:
  • NCI NIH HHS - F31 CA186668()
  • NIGMS NIH HHS - R01 GM116897()
  • NINDS NIH HHS - R01 NS073831()

GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK.

  • Pae J
  • Dev. Cell
  • 2017 Jul 24

Literature context: Aldrich Cat# A2220, RRID:AB_10063035 Anti-HA agarose gel Sigma-Aldric


Abstract:

The separation of germline from somatic lineages is fundamental to reproduction and species preservation. Here, we show that Drosophila Germ cell-less (GCL) is a critical component in this process by acting as a switch that turns off a somatic lineage pathway. GCL, a conserved BTB (Broad-complex, Tramtrack, and Bric-a-brac) protein, is a substrate-specific adaptor for Cullin3-RING ubiquitin ligase complex (CRL3GCL). We show that CRL3GCL promotes PGC fate by mediating degradation of Torso, a receptor tyrosine kinase (RTK) and major determinant of somatic cell fate. This mode of RTK degradation does not depend upon receptor activation but is prompted by release of GCL from the nuclear envelope during mitosis. The cell-cycle-dependent change in GCL localization provides spatiotemporal specificity for RTK degradation and sequesters CRL3GCL to prevent it from participating in excessive activities. This precisely orchestrated mechanism of CRL3GCL function and regulation defines cell fate at the single-cell level.

Funding information:
  • NCI NIH HHS - R01 CA076584()
  • NCI NIH HHS - R37 CA076584()
  • NCI NIH HHS - T32 CA160002()
  • NICHD NIH HHS - R01 HD041900()
  • NICHD NIH HHS - R37 HD041900()
  • NIGMS NIH HHS - R01 GM057587()
  • NIH HHS - P40 OD018537()

Structures of PGAM5 Provide Insight into Active Site Plasticity and Multimeric Assembly.

  • Chaikuad A
  • Structure
  • 2017 Jul 5

Literature context: t# A2220, RRID:AB_10063035 Anti-HA hi


Abstract:

PGAM5 is a mitochondrial membrane protein that functions as an atypical Ser/Thr phosphatase and is a regulator of oxidative stress response, necroptosis, and autophagy. Here we present several crystal structures of PGAM5 including the activating N-terminal regulatory sequences, providing a model for structural plasticity, dimerization of the catalytic domain, and the assembly into an enzymatically active dodecameric form. Oligomeric states observed in structures were supported by hydrogen exchange mass spectrometry, size-exclusion chromatography, and analytical ultracentrifugation experiments in solution. We report that the catalytically important N-terminal WDPNWD motif acts as a structural integrator assembling PGAM5 into a dodecamer, allosterically activating the phosphatase by promoting an ordering of the catalytic loop. Additionally the observed active site plasticity enabled visualization of essential conformational rearrangements of catalytic elements. The comprehensive biophysical characterization offers detailed structural models of this key mitochondrial phosphatase that has been associated with the development of diverse diseases.

Coupled Caspase and N-End Rule Ligase Activities Allow Recognition and Degradation of Pluripotency Factor LIN-28 during Non-Apoptotic Development.

  • Weaver BP
  • Dev. Cell
  • 2017 Jun 19

Literature context: t# A2220, RRID:AB_10063035 Chemicals,


Abstract:

Recent findings suggest that components of the classical cell death machinery also have important non-cell-death (non-apoptotic) functions in flies, nematodes, and mammals. However, the mechanisms for non-canonical caspase substrate recognition and proteolysis, and the direct roles for caspases in gene expression regulation, remain largely unclear. Here we report that CED-3 caspase and the Arg/N-end rule pathway cooperate to inactivate the LIN-28 pluripotency factor in seam cells, a stem-like cell type in Caenorhabditis elegans, thereby ensuring proper temporal cell fate patterning. Importantly, the caspase and the E3 ligase execute this function in a non-additive manner. We show that CED-3 caspase and the E3 ubiquitin ligase UBR-1 form a complex that couples their in vivo activities, allowing for recognition and rapid degradation of LIN-28 and thus facilitating a switch in developmental programs. The interdependence of these proteolytic activities provides a paradigm for non-apoptotic caspase-mediated protein inactivation.

Funding information:
  • NIGMS NIH HHS - R01 GM047869()

SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs.

  • Nozawa RS
  • Cell
  • 2017 Jun 15

Literature context: t# A2220; RRID:AB_10063035 anti-FLAG


Abstract:

Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A's AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability.

Meru couples planar cell polarity with apical-basal polarity during asymmetric cell division.

  • Banerjee JJ
  • Elife
  • 2017 Jun 30

Literature context: -Aldrich; RRID:AB_10063035), to GFP-T


Abstract:

Polarity is a shared feature of most cells. In epithelia, apical-basal polarity often coexists, and sometimes intersects with planar cell polarity (PCP), which orients cells in the epithelial plane. From a limited set of core building blocks (e.g. the Par complexes for apical-basal polarity and the Frizzled/Dishevelled complex for PCP), a diverse array of polarized cells and tissues are generated. This suggests the existence of little-studied tissue-specific factors that rewire the core polarity modules to the appropriate conformation. In Drosophila sensory organ precursors (SOPs), the core PCP components initiate the planar polarization of apical-basal determinants, ensuring asymmetric division into daughter cells of different fates. We show that Meru, a RASSF9/RASSF10 homologue, is expressed specifically in SOPs, recruited to the posterior cortex by Frizzled/Dishevelled, and in turn polarizes the apical-basal polarity factor Bazooka (Par3). Thus, Meru belongs to a class of proteins that act cell/tissue-specifically to remodel the core polarity machinery.

The Sec61 translocon limits IRE1α signaling during the unfolded protein response.

  • Sundaram A
  • Elife
  • 2017 May 15

Literature context: -Aldrich, RRID:AB_10063035), anti-HA


Abstract:

IRE1α is an endoplasmic reticulum (ER) localized endonuclease activated by misfolded proteins in the ER. Previously, we demonstrated that IRE1α forms a complex with the Sec61 translocon, to which its substrate XBP1u mRNA is recruited for cleavage during ER stress (Plumb et al., 2015). Here, we probe IRE1α complexes in cells with blue native PAGE immunoblotting. We find that IRE1α forms a hetero-oligomeric complex with the Sec61 translocon that is activated upon ER stress with little change in the complex. In addition, IRE1α oligomerization, activation, and inactivation during ER stress are regulated by Sec61. Loss of the IRE1α-Sec61 translocon interaction as well as severe ER stress conditions causes IRE1α to form higher-order oligomers that exhibit continuous activation and extended cleavage of XBP1u mRNA. Thus, we propose that the Sec61-IRE1α complex defines the extent of IRE1α activity and may determine cell fate decisions during ER stress conditions.

Funding information:
  • NIGMS NIH HHS - T32 GM007223()

Ubiquitin Modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9.

  • Yang CS
  • Mol. Cell
  • 2017 May 18

Literature context: ch A2220; RRID:AB_10063035 Parp9 This


Abstract:

ADP-ribosylation of proteins is emerging as an important regulatory mechanism. Depending on the family member, ADP-ribosyltransferases either conjugate a single ADP-ribose to a target or generate ADP-ribose chains. Here we characterize Parp9, a mono-ADP-ribosyltransferase reported to be enzymatically inactive. Parp9 undergoes heterodimerization with Dtx3L, a histone E3 ligase involved in DNA damage repair. We show that the Dtx3L/Parp9 heterodimer mediates NAD+-dependent mono-ADP-ribosylation of ubiquitin, exclusively in the context of ubiquitin processing by E1 and E2 enzymes. Dtx3L/Parp9 ADP-ribosylates the carboxyl group of Ub Gly76. Because Gly76 is normally used for Ub conjugation to substrates, ADP-ribosylation of the Ub carboxyl terminus precludes ubiquitylation. Parp9 ADP-ribosylation activity therefore restrains the E3 function of Dtx3L. Mutation of the NAD+ binding site in Parp9 increases the DNA repair activity of the heterodimer. Moreover, poly(ADP-ribose) binding to the Parp9 macrodomains increases E3 activity. Dtx3L heterodimerization with Parp9 enables NAD+ and poly(ADP-ribose) regulation of E3 activity.

Funding information:
  • NCI NIH HHS - R01 CA214872()

Aubergine Controls Germline Stem Cell Self-Renewal and Progeny Differentiation via Distinct Mechanisms.

  • Ma X
  • Dev. Cell
  • 2017 Apr 24

Literature context: t# A2220; RRID:AB_10063035 anti-Myc a


Abstract:

Piwi family protein Aubergine (Aub) maintains genome integrity in late germ cells of the Drosophila ovary through Piwi-associated RNA-mediated repression of transposon activities. Although it is highly expressed in germline stem cells (GSCs) and early progeny, it remains unclear whether it plays any roles in early GSC lineage development. Here we report that Aub promotes GSC self-renewal and GSC progeny differentiation. RNA-iCLIP results show that Aub binds the mRNAs encoding self-renewal and differentiation factors in cultured GSCs. Aub controls GSC self-renewal by preventing DNA-damage-induced Chk2 activation and by translationally controlling the expression of self-renewal factors. It promotes GSC progeny differentiation by translationally controlling the expression of differentiation factors, including Bam. Therefore, this study reveals a function of Aub in GSCs and their progeny, which promotes translation of self-renewal and differentiation factors by directly binding to its target mRNAs and interacting with translational initiation factors.

Funding information:
  • NHLBI NIH HHS - R01 HL133166(United States)

SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation.

  • Zhang X
  • Elife
  • 2017 Apr 13

Literature context: (#A2220, RRID:AB_10063035) and anti-


Abstract:

The Ras family of GTPases are important in cell signaling and frequently mutated in human tumors. Understanding their regulation is thus important for studying biology and human diseases. Here, we report that a novel posttranslational mechanism, reversible lysine fatty acylation, regulates R-Ras2, a member of the Ras family. SIRT6, a sirtuin with established tumor suppressor function, regulates the lysine fatty acylation of R-Ras2. In mouse embryonic fibroblasts (MEFs), Sirt6 knockout (KO) increased R-Ras2 lysine fatty acylation. Lysine fatty acylation promotes the plasma membrane localization of R-Ras2 and its interaction with phosphatidylinositol 3-kinase PI3K, leading to activated Akt and increased cell proliferation. Our study establishes lysine fatty acylation as a previously unknown mechanism that regulates the Ras family of GTPases and provides an important mechanism by which SIRT6 functions as a tumor suppressor.

Funding information:
  • NIDDK NIH HHS - R01 DK107868()
  • NIGMS NIH HHS - R01 GM098596()
  • NIGMS NIH HHS - T32 GM008500()
  • NIH HHS - S10 OD018516()

HDAC Inhibitor-Induced Mitotic Arrest Is Mediated by Eg5/KIF11 Acetylation.

  • Nalawansha DA
  • Cell Chem Biol
  • 2017 Apr 20

Literature context: ma A2220; RRID:AB_10063035 acetyl his


Abstract:

Histone deacetylase 1 (HDAC1) is an epigenetic enzyme that regulates key cellular processes, such as cell proliferation, apoptosis, and cell survival, by deacetylating histone substrates. Aberrant expression of HDAC1 is implicated in multiple diseases, including cancer. As a consequence, HDAC inhibitors have emerged as effective anti-cancer drugs. HDAC inhibitor-induced G0/G1 cell-cycle arrest has been attributed to epigenetic transcriptional changes mediated by histone acetylation. However, the mechanism of G2/M arrest remains poorly understood. Here, we identified mitosis-related protein Eg5 (KIF11) as an HDAC1 substrate using a trapping mutant strategy. HDAC1 colocalized with Eg5 during mitosis and influenced the ATPase activity of Eg5. Importantly, an HDAC1- and HDAC2-selective inhibitor caused mitotic arrest and monopolar spindle formation, consistent with a model in which Eg5 deacetylation by HDAC1 is critical for mitotic progression. These findings revealed a previously unknown mechanism of action of HDAC inhibitors involving Eg5 acetylation, and provide a compelling mechanistic hypothesis for HDAC inhibitor-mediated G2/M arrest.

Funding information:
  • NCI NIH HHS - P30 CA022453()
  • NIEHS NIH HHS - P30 ES020957()
  • NIGMS NIH HHS - R01 GM121061()
  • NIH HHS - S10 OD010700()

SINAT E3 Ligases Control the Light-Mediated Stability of the Brassinosteroid-Activated Transcription Factor BES1 in Arabidopsis.

  • Yang M
  • Dev. Cell
  • 2017 Apr 10

Literature context: 2220-5ML; RRID:AB_10063035 anti-c-MYC


Abstract:

The plant hormones brassinosteroids (BRs) participate in light-mediated regulation of plant growth, although the underlying mechanisms are far from being fully understood. In addition, the function of the core transcription factor in the BR signaling pathway, BRI1-EMS-SUPPRESSOR 1 (BES1), largely depends on its phosphorylation status and its protein stability, but the regulation of BES1 is not well understood. Here, we report that SINA of Arabidopsis thaliana (SINATs) specifically interact with dephosphorylated BES1 and mediate its ubiquitination and degradation. Our genetic data demonstrated that SINATs inhibit BR signaling in a BES1-dependent manner. Interestingly, we found that the protein levels of SINATs were decreased in the dark and increased in the light, which changed BES1 protein levels accordingly. Thus, our study not only uncovered a new mechanism of BES1 degradation but also provides significant insights into how light conditionally regulates plant growth through controlling accumulation of different forms of BES1.

The Super Elongation Complex Drives Neural Stem Cell Fate Commitment.

  • Liu K
  • Dev. Cell
  • 2017 Mar 27

Literature context: at#A2220; RRID:AB_10063035 Anti-HA af


Abstract:

Asymmetric stem cell division establishes an initial difference between a stem cell and its differentiating sibling, critical for maintaining homeostasis and preventing carcinogenesis. Yet the mechanisms that consolidate and lock in such initial fate bias remain obscure. Here, we use Drosophila neuroblasts to demonstrate that the super elongation complex (SEC) acts as an intrinsic amplifier to drive cell fate commitment. SEC is highly expressed in neuroblasts, where it promotes self-renewal by physically associating with Notch transcription activation complex and enhancing HES (hairy and E(spl)) transcription. HES in turn upregulates SEC activity, forming an unexpected self-reinforcing feedback loop with SEC. SEC inactivation leads to neuroblast loss, whereas its forced activation results in neural progenitor dedifferentiation and tumorigenesis. Our studies unveil an SEC-mediated intracellular amplifier mechanism in ensuring robustness and precision in stem cell fate commitment and provide mechanistic explanation for the highly frequent association of SEC overactivation with human cancers.

Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1.

  • Nguyen HD
  • Mol. Cell
  • 2017 Mar 2

Literature context: ma A2220, RRID:AB_10063035 GAPDH Mill


Abstract:

R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here we show that replication protein A (RPA), an ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability.

Funding information:
  • NCI NIH HHS - R01 CA197779()
  • NCRR NIH HHS - P41 RR001081()
  • NIGMS NIH HHS - R01 GM076388()

NBS1 Phosphorylation Status Dictates Repair Choice of Dysfunctional Telomeres.

  • Rai R
  • Mol. Cell
  • 2017 Mar 2

Literature context: ch A2220; RRID:AB_10063035 Chemicals,


Abstract:

Telomeres employ TRF2 to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), thereby repressing ATM-dependent DNA damage checkpoint responses. How TRF2 prevents MRN activation at dysfunctional telomeres is unclear. Here, we show that the phosphorylation status of NBS1 determines the repair pathway choice of dysfunctional telomeres. The crystal structure of the TRF2-NBS1 complex at 3.0 Å resolution shows that the NBS1 429YQLSP433 motif interacts specifically with the TRF2TRFH domain. Phosphorylation of NBS1 serine 432 by CDK2 in S/G2 dissociates NBS1 from TRF2, promoting TRF2-Apollo/SNM1B complex formation and the protection of leading-strand telomeres. Classical-NHEJ-mediated repair of telomeres lacking TRF2 requires phosphorylated NBS1S432 to activate ATM, while interaction of de-phosphorylated NBS1S432 with TRF2 promotes alternative-NHEJ repair of telomeres lacking POT1-TPP1. Our work advances understanding of how the TRF2TRFH domain orchestrates telomere end protection and reveals how the phosphorylation status of the NBS1S432 dictates repair pathway choice of dysfunctional telomeres.

Funding information:
  • NCI NIH HHS - P30 CA016359()
  • NIA NIH HHS - R01 AG028888()

Substrate specificity of TOR complex 2 is determined by a ubiquitin-fold domain of the Sin1 subunit.

  • Tatebe H
  • Elife
  • 2017 Mar 7

Literature context: nity gel (RRID:AB_10063035) or EZview


Abstract:

The target of rapamycin (TOR) protein kinase forms multi-subunit TOR complex 1 (TORC1) and TOR complex 2 (TORC2), which exhibit distinct substrate specificities. Sin1 is one of the TORC2-specific subunit essential for phosphorylation and activation of certain AGC-family kinases. Here, we show that Sin1 is dispensable for the catalytic activity of TORC2, but its conserved region in the middle (Sin1CRIM) forms a discrete domain that specifically binds the TORC2 substrate kinases. Sin1CRIM fused to a different TORC2 subunit can recruit the TORC2 substrate Gad8 for phosphorylation even in the sin1 null mutant of fission yeast. The solution structure of Sin1CRIM shows a ubiquitin-like fold with a characteristic acidic loop, which is essential for interaction with the TORC2 substrates. The specific substrate-recognition function is conserved in human Sin1CRIM, which may represent a potential target for novel anticancer drugs that prevent activation of the mTORC2 substrates such as AKT.

An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP.

  • Siegenthaler KD
  • Elife
  • 2017 Mar 3

Literature context: ty resin (RRID:AB_10063035) plus one


Abstract:

Unfavorable redox conditions in the endoplasmic reticulum (ER) can decrease the capacity for protein secretion, altering vital cell functions. While systems to manage reductive stress are well-established, how cells cope with an overly oxidizing ER remains largely undefined. In previous work (Wang et al., 2014), we demonstrated that the chaperone BiP is a sensor of overly oxidizing ER conditions. We showed that modification of a conserved BiP cysteine during stress beneficially alters BiP chaperone activity to cope with suboptimal folding conditions. How this cysteine is reduced to reestablish 'normal' BiP activity post-oxidative stress has remained unknown. Here we demonstrate that BiP's nucleotide exchange factor - Sil1 - can reverse BiP cysteine oxidation. This previously unexpected reductant capacity for yeast Sil1 has potential implications for the human ataxia Marinesco-Sjögren syndrome, where it is interesting to speculate that a disruption in ER redox-signaling (due to genetic defects in SIL1) may influence disease pathology.

Funding information:
  • NIGMS NIH HHS - R01 GM105958()
  • NIGMS NIH HHS - T32 GM007273()

Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/BCL9.

  • van Tienen LM
  • Elife
  • 2017 Mar 15

Literature context: and α-FLAG M2 affinity gel RRID:AB_10063035 (Sigma-Aldrich) was used for RIM


Abstract:

Wnt/β-catenin signaling elicits context-dependent transcription switches that determine normal development and oncogenesis. These are mediated by the Wnt enhanceosome, a multiprotein complex binding to the Pygo chromatin reader and acting through TCF/LEF-responsive enhancers. Pygo renders this complex Wnt-responsive, by capturing β-catenin via the Legless/BCL9 adaptor. We used CRISPR/Cas9 genome engineering of Drosophila legless (lgs) and human BCL9 and B9L to show that the C-terminus downstream of their adaptor elements is crucial for Wnt responses. BioID proximity labeling revealed that BCL9 and B9L, like PYGO2, are constitutive components of the Wnt enhanceosome. Wnt-dependent docking of β-catenin to the enhanceosome apparently causes a rearrangement that apposes the BCL9/B9L C-terminus to TCF. This C-terminus binds to the Groucho/TLE co-repressor, and also to the Chip/LDB1-SSDP enhanceosome core complex via an evolutionary conserved element. An unexpected link between BCL9/B9L, PYGO2 and nuclear co-receptor complexes suggests that these β-catenin co-factors may coordinate Wnt and nuclear hormone responses.

Funding information:
  • Medical Research Council - MC_U105184273()
  • Medical Research Council - MC_U105192713()

Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket.

  • Zimmerman B
  • Cell
  • 2016 Nov 3

Literature context: ch A2220; RRID:AB_10063035 Chemicals,


Abstract:

Tetraspanins comprise a diverse family of four-pass transmembrane proteins that play critical roles in the immune, reproductive, genitourinary, and auditory systems. Despite their pervasive roles in human physiology, little is known about the structure of tetraspanins or the molecular mechanisms underlying their various functions. Here, we report the crystal structure of human CD81, a full-length tetraspanin. The transmembrane segments of CD81 pack as two largely separated pairs of helices, capped by the large extracellular loop (EC2) at the outer membrane leaflet. The two pairs of helices converge at the inner leaflet to create an intramembrane pocket with additional electron density corresponding to a bound cholesterol molecule within the cavity. Molecular dynamics simulations identify an additional conformation in which EC2 separates substantially from the transmembrane domain. Cholesterol binding appears to modulate CD81 activity in cells, suggesting a potential mechanism for regulation of tetraspanin function.

An alternative splicing program promotes adipose tissue thermogenesis.

  • Vernia S
  • Elife
  • 2016 Sep 16

Literature context: t# A2220, RRID:AB_10063035) (Gupta et


Abstract:

Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia.

The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding.

  • Woodford MR
  • Nat Commun
  • 2016 Jun 29

Literature context: antibodies recognizing 1:8,000 FLAG (Cat. A2220, Sigma-Aldrich); 1:2,000 Tetra-His (Cat. 34670


Abstract:

Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes involved in maintaining the stability and activity of numerous signalling proteins, also known as clients. Hsp90 ATPase activity is essential for its chaperone function and it is regulated by co-chaperones. Here we show that the tumour suppressor FLCN is an Hsp90 client protein and its binding partners FNIP1/FNIP2 function as co-chaperones. FNIPs decelerate the chaperone cycle, facilitating FLCN interaction with Hsp90, consequently ensuring FLCN stability. FNIPs compete with the activating co-chaperone Aha1 for binding to Hsp90, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. Lastly, downregulation of FNIPs desensitizes cancer cells to Hsp90 inhibitors, whereas FNIPs overexpression in renal tumours compared with adjacent normal tissues correlates with enhanced binding of Hsp90 to its inhibitors. Our findings suggest that FNIPs expression can potentially serve as a predictive indicator of tumour response to Hsp90 inhibitors.

Funding information:
  • NIGMS NIH HHS - R01 GM050291(United States)

Revisiting PC1/3 Mutants: Dominant-Negative Effect of Endoplasmic Reticulum-Retained Mutants.

  • Blanco EH
  • Endocrinology
  • 2015 Oct 19

Literature context:


Abstract:

Prohormone convertase 1/3 (PC1/3), encoded by the gene PCSK1, is critical for peptide hormone synthesis. An increasing number of studies have shown that inactivating mutations in PCSK1 are correlated with endocrine pathologies ranging from intestinal dysfunction to morbid obesity, whereas the common nonsynonymous polymorphisms rs6232 (N221D) and rs6234-rs6235 (Q665E-S690T) are highly associated with obesity risk. In this report, we revisited the biochemical and cellular properties of PC1/3 variants in the context of a wild-type PC1/3 background instead of the S357G hypermorph background used for all previous studies. In the wild-type background the PC1/3 N221D variant exhibited 30% lower enzymatic activity in a fluorogenic assay than wild-type PC1/3; this inhibition was greater than that detected in an equivalent experiment using the PC1/3 S357G background. A PC1/3 variant with the linked carboxyl-terminal polymorphisms Q665E-S690T did not show this difference. We also analyzed the biochemical properties of 2 PC1/3 mutants, G209R and G593R, which are retained in the endoplasmic reticulum (ER), and studied their effects on wild-type PC1/3. The expression of ER-retained mutants induced ER stress markers and also resulted in dominant-negative blockade of wild-type PC1/3 prodomain cleavage and decreased expression of wild-type PC1/3, suggesting facilitation of the entry of wild-type protein to a degradative proteasomal pathway. Dominant-negative effects of PC1/3 mutations on the expression and maturation of wild-type protein, with consequential effects on PC1/3 availability, add a new element which must be considered in population and clinical studies of this gene.

Funding information:
  • NIMH NIH HHS - MH67121(United States)

Registered report: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases.

  • Evans B
  • Elife
  • 2015 Jul 31

Literature context: Provided by the original authorsAnti-Flag M2 antibody agarose affinity gelReagentSigma–AldrichA2220Flag pe


Abstract:

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from 'Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases' by Xu and colleagues, published in Cancer Cell in 2011 (Xu et al., 2011). The key experiments being replicated include Supplemental Figure 3I, which demonstrates that transfection with mutant forms of IDH1 increases levels of 2-hydroxyglutarate (2-HG), Figures 3A and 8A, which demonstrate changes in histone methylation after treatment with 2-HG, and Figures 3D and 7B, which show that mutant IDH1 can effect the same changes as treatment with excess 2-HG. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife.

Funding information:
  • NINDS NIH HHS - N01NS02331(United States)

A Cdh1-APC/FMRP Ubiquitin Signaling Link Drives mGluR-Dependent Synaptic Plasticity in the Mammalian Brain.

  • Huang J
  • Neuron
  • 2015 May 6

Literature context: lular (Millipore, clone 6C4),mouse anti-Flag M2 affinity gel (Sigma Aldrich, A2220), rabbit anti-Flag (Sigma Al


Abstract:

Deregulation of synaptic plasticity may contribute to the pathogenesis of developmental cognitive disorders. In particular, exaggerated mGluR-dependent LTD is featured in fragile X syndrome, but the mechanisms that regulate mGluR-LTD remain incompletely understood. We report that conditional knockout of Cdh1, the key regulatory subunit of the ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC), profoundly impairs mGluR-LTD in the hippocampus. Mechanistically, we find that Cdh1-APC operates in the cytoplasm to drive mGluR-LTD. We also identify the fragile X syndrome protein FMRP as a substrate of Cdh1-APC. Endogenous Cdh1-APC forms a complex with endogenous FMRP, and knockout of Cdh1 impairs mGluR-induced ubiquitination and degradation of FMRP in the hippocampus. Knockout of FMRP suppresses, and expression of an FMRP mutant protein that fails to interact with Cdh1 phenocopies, the Cdh1 knockout phenotype of impaired mGluR-LTD. These findings define Cdh1-APC and FMRP as components of a novel ubiquitin signaling pathway that regulates mGluR-LTD in the brain.