X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Polyclonal Rabbit Anti-Glial Fibrillary Acidic Protein (GFAP) antibody

RRID:AB_10013482

Antibody ID

AB_10013482

Target Antigen

Rabbit Glial Fibrillary Acidic Protein (GFAP) human, human glial fibrillary acidic protein (gfap)

Vendor

Agilent

Cat Num

N1506

Proper Citation

(Agilent Cat# N1506, RRID:AB_10013482)

Clonality

polyclonal antibody

Host Organism

rabbit

Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function.

  • Sardinha VM
  • Glia
  • 2018 Jun 5

Literature context: g: rabbit polyclonal anti-GFAP (RRID:AB_10013482; 1:200, DakoCytomation, Denmark


Abstract:

Astrocytes interact with neurons at the cellular level through modulation of synaptic formation, maturation, and function, but the impact of such interaction into behavior remains unclear. Here, we studied the dominant negative SNARE (dnSNARE) mouse model to dissect the role of astrocyte-derived signaling in corticolimbic circuits, with implications for cognitive processing. We found that the blockade of gliotransmitter release in astrocytes triggers a critical desynchronization of neural theta oscillations between dorsal hippocampus and prefrontal cortex. Moreover, we found a strong cognitive impairment in tasks depending on this network. Importantly, the supplementation with d-serine completely restores hippocampal-prefrontal theta synchronization and rescues the spatial memory and long-term memory of dnSNARE mice. We provide here novel evidence of long distance network modulation by astrocytes, with direct implications to cognitive function.

Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner.

  • Petrik D
  • Cell Stem Cell
  • 2018 Jun 1

Literature context: otein Dako Cat# N1506; RRID:AB_10013482 Anti-Glial Fibrillary Acidic Pr


Abstract:

One hallmark of adult neurogenesis is its adaptability to environmental influences. Here, we uncovered the epithelial sodium channel (ENaC) as a key regulator of adult neurogenesis as its deletion in neural stem cells (NSCs) and their progeny in the murine subependymal zone (SEZ) strongly impairs their proliferation and neurogenic output in the olfactory bulb. Importantly, alteration of fluid flow promotes proliferation of SEZ cells in an ENaC-dependent manner, eliciting sodium and calcium signals that regulate proliferation via calcium-release-activated channels and phosphorylation of ERK. Flow-induced calcium signals are restricted to NSCs in contact with the ventricular fluid, thereby providing a highly specific mechanism to regulate NSC behavior at this special interface with the cerebrospinal fluid. Thus, ENaC plays a central role in regulating adult neurogenesis, and among multiple modes of ENaC function, flow-induced changes in sodium signals are critical for NSC biology.

Funding information:
  • Intramural NIH HHS - ZIA CP005803-15(United States)

The Orphan G Protein-coupled Receptor 75 Signaling is Activated by the Chemokine CCL5.

  • Dedoni S
  • J. Neurochem.
  • 2018 May 17

Literature context: rpinteria, CA, USA, cat# N1506, RRID:AB_10013482).


Abstract:

The chemokine CCL5 prevents neuronal cell death mediated both by amyloid β, as well as the human immunodeficiency virus (HIV) viral proteins gp120 and Tat. Because CCL5 binds to CCR5, CCR3 and/or CCR1 receptors, it is unclear which of these receptors plays a role in neuroprotection. Indeed, CCL5 also has neuroprotective activity in cells lacking these receptors. CCL5 may bind to a G protein-coupled receptor 75 (GPR75), which encodes for a 540 amino-acid orphan receptor of the Gqα family. In this study, we have used SH-SY5Y human neuroblastoma cells to characterize whether CCL5 could activate a Gq signaling through GPR75. Both qPCR and flow cytometry show that these cells express GPR75 but do not express CCR5, CCR3 or CCR1 receptors. SY-SY5Y cells were then used to examine CCL5-mediated signaling. We report that CCL5 promotes a time- and concentration-dependent phosphorylation of protein kinase B (AKT), glycogen synthase kinase 3β and extracellular signal-regulated kinase (ERK) 1/2. Specific antagonists of CCR5, CCR3 and CCR1 did not prevent CCL5 from increasing phosphorylated AKT or ERK. Moreover, CCL5 promotes a time-dependent internalization of GPR75. Lastly, knocking down GPR75 expression by a CRISPR-Cas9 approach inhibited the ability of CCL5 to activate pERK in SH-SY5Y cells. Therefore, we propose that GPR75 is a novel receptor for CCL5 that could explain some of the pharmacological action of this chemokine. These findings may help in the development of small molecule GPR75 agonists that mimic CCL5. This article is protected by copyright. All rights reserved.

Funding information:
  • NIGMS NIH HHS - R15GM055885(United States)
  • NINDS NIH HHS - R21 NS089446()

Comprehensive analysis of area-specific and time-dependent changes in gene expression in the motor cortex of macaque monkeys during recovery from spinal cord injury.

  • Higo N
  • J. Comp. Neurol.
  • 2018 May 1

Literature context: dy (Dako Cytomation Cat# N1506, RRID:AB_10013482) was raised against raised agai


Abstract:

The present study aimed to assess the molecular bases of cortical compensatory mechanisms following spinal cord injury in primates. To accomplish this, comprehensive changes in gene expression were investigated in the bilateral primary motor cortex (M1), dorsal premotor cortex (PMd), and ventral premotor cortex (PMv) after a unilateral lesion of the lateral corticospinal tract (l-CST). At 2 weeks after the lesion, a large number of genes exhibited altered expression levels in the contralesional M1, which is directly linked to the lesioned l-CST. Gene ontology and network analyses indicated that these changes in gene expression are involved in the atrophy and plasticity changes observed in neurons. Orchestrated gene expression changes were present when behavioral recovery was attained 3 months after the lesion, particularly among the bilateral premotor areas, and a large number of these genes are involved in plasticity. Moreover, several genes abundantly expressed in M1 of intact monkeys were upregulated in both the PMd and PMv after the l-CST lesion. These area-specific and time-dependent changes in gene expression may underlie the molecular mechanisms of functional recovery following a lesion of the l-CST.

Neurovascular sequestration in paediatric P. falciparum malaria is visible clinically in the retina.

  • Barrera V
  • Elife
  • 2018 Mar 26

Literature context: RRID:AB_10013482 Rb pAb Proteinase K 1:2,000, o.


Abstract:

Retinal vessel changes and retinal whitening, distinctive features of malarial retinopathy, can be directly observed during routine eye examination in children with P. falciparum cerebral malaria. We investigated their clinical significance and underlying mechanisms through linked clinical, clinicopathological and image analysis studies. Orange vessels and severe foveal whitening (clinical examination, n = 817, OR, 95% CI: 2.90, 1.96-4.30; 3.4, 1.8-6.3, both p<0.001), and arteriolar involvement by intravascular filling defects (angiographic image analysis, n = 260, 2.81, 1.17-6.72, p<0.02) were strongly associated with death. Orange vessels had dense sequestration of late stage parasitised red cells (histopathology, n = 29; sensitivity 0.97, specificity 0.89) involving 360° of the lumen circumference, with altered protein expression in blood-retinal barrier cells and marked loss/disruption of pericytes. Retinal whitening was topographically associated with tissue response to hypoxia. Severe neurovascular sequestration is visible at the bedside, and is a marker of severe disease useful for diagnosis and management.

Funding information:
  • Medical Research Council - 069962/Z/02/Z(United Kingdom)
  • NIH Clinical Center - #5R01AI034969-11()
  • Wellcome - #074125()
  • Wellcome - #092668/Z/10/Z()

Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.

  • Hesp ZC
  • J. Neurosci.
  • 2018 Feb 7

Literature context: t Dako N1506 RRID:AB_10013482 GSTÏ€: oligodendrocytes 1/1500 R


Abstract:

Spinal cord injury (SCI) induces a centralized fibrotic scar surrounded by a reactive glial scar at the lesion site. The origin of these scars is thought to be perivascular cells entering lesions on ingrowing blood vessels and reactive astrocytes, respectively. However, two NG2-expressing cell populations, pericytes and glia, may also influence scar formation. In the periphery, new blood vessel growth requires proliferating NG2+ pericytes; if this were also true in the CNS, then the fibrotic scar would depend on dividing NG2+ pericytes. NG2+ glial cells (also called oligodendrocyte progenitors or polydendrocytes) also proliferate after SCI and accumulate in large numbers among astrocytes in the glial scar. Their effect there, if any, is unknown. We show that proliferating NG2+ pericytes and glia largely segregate into the fibrotic and glial scars, respectively; therefore, we used a thymidine kinase/ganciclovir paradigm to ablate both dividing NG2+ cell populations to determine whether either scar was altered. Results reveal that loss of proliferating NG2+ pericytes in the lesion prevented intralesion angiogenesis and completely abolished the fibrotic scar. The glial scar was also altered in the absence of acutely dividing NG2+ cells, displaying discontinuous borders and significantly reduced GFAP density. Collectively, these changes enhanced edema, prolonged hemorrhage, and impaired forelimb functional recovery. Interestingly, after halting GCV at 14 d postinjury, scar elements and vessels entered the lesions over the next 7 d, as did large numbers of axons that were not present in controls. Collectively, these data reveal that acutely dividing NG2+ pericytes and glia play fundamental roles in post-SCI tissue remodeling.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) is characterized by formation of astrocytic and fibrotic scars, both of which are necessary for lesion repair. NG2+ cells may influence both scar-forming processes. This study used a novel transgenic mouse paradigm to ablate proliferating NG2+ cells after SCI to better understand their role in repair. For the first time, our data show that dividing NG2+ pericytes are required for post-SCI angiogenesis, which in turn is needed for fibrotic scar formation. Moreover, loss of cycling NG2+ glia and pericytes caused significant multicellular tissue changes, including altered astrocyte responses and impaired functional recovery. This work reveals previously unknown ways in which proliferating NG2+ cells contribute to endogenous repair after SCI.

Funding information:
  • NIGMS NIH HHS - T32GM082729(United States)
  • NINDS NIH HHS - R01 NS049267()
  • NINDS NIH HHS - R01 NS073425()
  • NINDS NIH HHS - R01 NS074870()

Ndrg2 deficiency ameliorates neurodegeneration in experimental autoimmune encephalomyelitis.

  • Le TM
  • J. Neurochem.
  • 2018 Jan 10

Literature context: es, Inc., Santa Clara, CA, USA, RRID:AB_10013482), ionized calcium binding adapt


Abstract:

N-myc downstream-regulated gene 2 (NDRG2) is a differentiation- and stress-associated molecule that is predominantly expressed in astrocytes in the central nervous system. In this study, we examined the expression and role of NDRG2 in experimental autoimmune encephalomyelitis (EAE), which is an animal model of multiple sclerosis. Western blot and immunohistochemical analysis revealed that the expression of NDRG2 was observed in astrocytes of spinal cord, and was enhanced after EAE induction. A comparative analysis of wild-type and Ndrg2-/- mice revealed that deletion of Ndrg2 ameliorated the clinical symptoms of EAE. Although Ndrg2 deficiency only slightly affected the inflammatory response, based on the results of flow cytometry, qRT-PCR, and immunohistochemistry, it significantly reduced demyelination in the chronic phase, and, more importantly, neurodegeneration both in the acute and chronic phases. Further studies revealed that the expression of astrocytic glutamate transporters, including glutamate aspartate transporter (GLAST) and glutamate transporter 1, was more maintained in the Ndrg2-/- mice compared with wild-type mice after EAE induction. Consistent with these results, studies using cultured astrocytes revealed that Ndrg2 gene silencing increased the expression of GLAST, while NDRG2 over-expression decreased it without altering the expression of glial fibrillary acidic protein. The effect of NDRG2 on GLAST expression was associated with the activation of Akt, but not with the activation of nuclear factor-kappa B. These findings suggest that NDRG2 plays a key role in the pathology of EAE by modulating glutamate metabolism. Cover Image for this Issue: doi: 10.1111/jnc.14173.

Funding information:
  • NCRR NIH HHS - C06 RR015455(United States)

LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair.

  • Lin JP
  • Elife
  • 2017 Dec 18

Literature context: rabbit anti-GFAP DAKO # A 0334, RRID:AB_10013482


Abstract:

Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling molecule broadly expressed by neurons and glia. In adult mice, global inducible (Lrp1flox/flox;CAG-CreER) or oligodendrocyte (OL)-lineage specific ablation (Lrp1flox/flox;Pdgfra-CreER) of Lrp1 attenuates repair of damaged white matter. In oligodendrocyte progenitor cells (OPCs), Lrp1 is required for cholesterol homeostasis and differentiation into mature OLs. Lrp1-deficient OPC/OLs show a strong increase in the sterol-regulatory element-binding protein-2 yet are unable to maintain normal cholesterol levels, suggesting more global metabolic deficits. Mechanistic studies revealed a decrease in peroxisomal biogenesis factor-2 and fewer peroxisomes in OL processes. Treatment of Lrp1-/- OPCs with cholesterol or activation of peroxisome proliferator-activated receptor-γ with pioglitazone alone is not sufficient to promote differentiation; however, when combined, cholesterol and pioglitazone enhance OPC differentiation into mature OLs. Collectively, our studies reveal a novel role for Lrp1 in peroxisome biogenesis, lipid homeostasis, and OPC differentiation during white matter development and repair.

Funding information:
  • NCI NIH HHS - R01-CA148761(United States)

Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration.

  • Han SB
  • J. Neurosci.
  • 2017 Nov 8

Literature context: tion, N1506; 1:500, RRID:AB_10013482), mouse anti-GFAP (Sigma-Aldirc


Abstract:

Following nerve injury, denervated Schwann cells (SCs) convert to repair SCs, which enable regeneration of peripheral axons. However, the repair capacity of SCs and the regenerative capacity of peripheral axons are limited. In the present studies we examined a potential therapeutic strategy to enhance the repair capacity of SCs, and tested its efficacy in enhancing regeneration of dorsal root (DR) axons, whose regenerative capacity is particularly weak. We used male and female mice of a doxycycline-inducible transgenic line to induce expression of constitutively active ErbB2 (caErbB2) selectively in SCs after DR crush or transection. Two weeks after injury, injured DRs of induced animals contained far more SCs and SC processes. These SCs had not redifferentiated and continued to proliferate. Injured DRs of induced animals also contained far more axons that regrew along SC processes past the transection or crush site. Remarkably, SCs and axons in uninjured DRs remained quiescent, indicating that caErbB2 enhanced regeneration of injured DRs, without aberrantly activating SCs and axons in intact nerves. We also found that intraspinally expressed glial cell line-derived neurotrophic factor (GDNF), but not the removal of chondroitin sulfate proteoglycans, greatly enhanced the intraspinal migration of caErbB2-expressing SCs, enabling robust penetration of DR axons into the spinal cord. These findings indicate that SC-selective, post-injury activation of ErbB2 provides a novel strategy to powerfully enhance the repair capacity of SCs and axon regeneration, without substantial off-target damage. They also highlight that promoting directed migration of caErbB2-expressing SCs by GDNF might be useful to enable axon regrowth in a non-permissive environment.SIGNIFICANCE STATEMENT Repair of injured peripheral nerves remains a critical clinical problem. We currently lack a therapy that potently enhances axon regeneration in patients with traumatic nerve injury. It is extremely challenging to substantially increase the regenerative capacity of damaged nerves without deleterious off-target effects. It was therefore of great interest to discover that caErbB2 markedly enhances regeneration of damaged dorsal roots, while evoking little change in intact roots. To our knowledge, these findings are the first demonstration that repair capacity of denervated SCs can be efficaciously enhanced without altering innervated SCs. Our study also demonstrates that oncogenic ErbB2 signaling can be activated in SCs but not impede transdifferentiation of denervated SCs to regeneration-promoting repair SCs.

Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells.

  • Sloan SA
  • Neuron
  • 2017 Aug 16

Literature context: 3401-2; RRID:AB_10013482 Mouse anti-TUJ1 Covance Cat# MM


Abstract:

There is significant need to develop physiologically relevant models for investigating human astrocytes in health and disease. Here, we present an approach for generating astrocyte lineage cells in a three-dimensional (3D) cytoarchitecture using human cerebral cortical spheroids (hCSs) derived from pluripotent stem cells. We acutely purified astrocyte-lineage cells from hCSs at varying stages up to 20 months in vitro using immunopanning and cell sorting and performed high-depth bulk and single-cell RNA sequencing to directly compare them to purified primary human brain cells. We found that hCS-derived glia closely resemble primary human fetal astrocytes and that, over time in vitro, they transition from a predominantly fetal to an increasingly mature astrocyte state. Transcriptional changes in astrocytes are accompanied by alterations in phagocytic capacity and effects on neuronal calcium signaling. These findings suggest that hCS-derived astrocytes closely resemble primary human astrocytes and can be used for studying development and modeling disease.

Heparan sulfate alterations in extracellular matrix structures and fibroblast growth factor-2 signaling impairment in the aged neurogenic niche.

  • Yamada T
  • J. Neurochem.
  • 2017 Aug 26

Literature context: body dilutions were used: GFAP (RRID:AB_10013482; 1 : 1000 rabbit; Dako), DCX (R


Abstract:

Adult neurogenesis in the subventricular zone of the lateral ventricle decreases with age. In the subventricular zone, the specialized extracellular matrix structures, known as fractones, contact neural stem cells and regulate neurogenesis. Fractones are composed of extracellular matrix components, such as heparan sulfate proteoglycans. We previously found that fractones capture and store fibroblast growth factor 2 (FGF-2) via heparan sulfate binding, and may deliver FGF-2 to neural stem cells in a timely manner. The heparan sulfate (HS) chains in the fractones of the aged subventricular zone are modified based on immunohistochemistry. However, how aging affects fractone composition and subsequent FGF-2 signaling and neurogenesis remains unknown. The formation of the FGF-fibroblast growth factor receptor-HS complex is necessary to activate FGF-2 signaling and induce the phosphorylation of extracellular signal-regulated kinase (Erk1/2). In this study, we observed a reduction in HS 6-O-sulfation, which is critical for FGF-2 signal transduction, and failure of the FGF-2-induced phosphorylation of Erk1/2 in the aged subventricular zone. In addition, we observed increased HS 6-O-endo-sulfatase, an enzyme that may be responsible for the HS modifications in aged fractones. In conclusion, the data revealed that heparan sulfate 6-O-sulfation is reduced and FGF-2-dependent Erk1/2 signaling is impaired in the aged subventricular zone. HS modifications in fractones might play a role in the reduced neurogenic activity in aging brains.

Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy.

  • Janz P
  • Elife
  • 2017 Jul 26

Literature context: rabbit anti-GFAP (1:500; RRID:AB_10013482, Dako, Hamburg, GER). For detec


Abstract:

Mesial temporal lobe epilepsy (mTLE) is the most common focal epilepsy in adults and is often refractory to medication. So far, resection of the epileptogenic focus represents the only curative therapy. It is unknown whether pathological processes preceding epilepsy onset are indicators of later disease severity. Using longitudinal multi-modal MRI, we monitored hippocampal injury and tissue reorganization during epileptogenesis in a mouse mTLE model. The prognostic value of MRI biomarkers was assessed by retrospective correlations with pathological hallmarks Here, we show for the first time that the extent of early hippocampal neurodegeneration and progressive microstructural changes in the dentate gyrus translate to the severity of hippocampal sclerosis and seizure burden in chronic epilepsy. Moreover, we demonstrate that structural MRI biomarkers reflect the extent of sclerosis in human hippocampi. Our findings may allow an early prognosis of disease severity in mTLE before its first clinical manifestations, thus expanding the therapeutic window.

Ischemia-responsive protein 94 is a key mediator of ischemic neuronal injury-induced microglial activation.

  • Tikamdas R
  • J. Neurochem.
  • 2017 Jun 22

Literature context: illary acidic protein antibody (RRID:AB_10013482, DAKO, Carpinteria, CA, USA), a


Abstract:

Neuroinflammation, especially activation of microglia, the key immune cells in the brain, has been proposed to contribute to the pathogenesis of ischemic stroke. However, the dynamics and the potential mediators of microglial activation following ischemic neuronal injury are not well understood. In this study, using oxygen/glucose deprivation and reoxygenation with neuronal and microglial cell cultures as an in vitro model of ischemic neuronal injury, we set out to identify neuronal factors released from injured neurons that are capable of inducing microglial activation. Conditioned media (CM) from hippocampal and cortical neurons exposed to oxygen/glucose deprivation and reoxygenation induced significant activation of microglial cells as well as primary microglia, evidenced by up-regulation of inducible nitric oxide synthase, increased production of nitrite and reactive oxygen species, and increased expression of microglial markers. Mechanistically, neuronal ischemia-responsive protein 94 (Irp94) was a key contributor to microglial activation since significant increase in Irp94 was detected in the neuronal CM following ischemic insult and immunodepletion of Irp94 rendered ischemic neuronal CM ineffective in inducing microglial activation. Ischemic insult-augmented oxidative stress was a major facilitator of neuronal Irp94 release, and pharmacological inhibition of NADPH oxidase significantly reduced the ischemic injury-induced neuronal reactive oxygen species production and Irp94 release. Taken together, these results indicate that neuronal Irp94 may play a pivotal role in the propagation of ischemic neuronal damage. Continued studies may help identify Irp94 and/or related proteins as potential therapeutic targets and/or diagnostic/prognostic biomarkers for managing ischemia-associated brain disorders.

Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells.

  • Sternfeld MJ
  • Elife
  • 2017 Feb 14

Literature context: 00, Dako, RRID:AB_10013482). Imaging


Abstract:

Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons.

Funding information:
  • NINDS NIH HHS - F31 NS080340()
  • NINDS NIH HHS - R01 NS090919()

Suppressing N-Acetyl-l-Aspartate Synthesis Prevents Loss of Neurons in a Murine Model of Canavan Leukodystrophy.

  • Sohn J
  • J. Neurosci.
  • 2017 Jan 11

Literature context: :500 dilution, Dako Z033429-02; RRID:AB_10013482), mouse anti-NeuN IgG1 (1:500 d


Abstract:

Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in AspaNur7/Nur7 mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like. SIGNIFICANCE STATEMENT: This is the first demonstration of cortical and cerebellar neuron depletion and progressive cerebral cortical thinning in an animal model of Canavan disease. Genetic suppression of N-acetyl-l-aspartate (NAA) synthesis, previously shown to block brain vacuolation in aspartoacylase-deficient mice, also prevents neuron loss and cerebral cortical atrophy in these mice. These results suggest that lowering the concentration of NAA in the brains of children with Canavan disease would prevent or slow progression of neurological deficits.

Funding information:
  • NINDS NIH HHS - R01 NS094559()
  • NINDS NIH HHS - R21 NS096004()

Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth.

  • Hu B
  • Cell
  • 2016 Nov 17

Literature context: at# N1506 RRID:AB_10013482 Rabbit mon


Abstract:

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.

Funding information:
  • NINDS NIH HHS - R56 NS094589(United States)

Saccadic Palsy following Cardiac Surgery: Possible Role of Perineuronal Nets.

  • Eggers SD
  • PLoS ONE
  • 2015 Jul 3

Literature context: k; N1506, RRID:AB_10013482) and mouse


Abstract:

OBJECTIVE: Perineuronal nets (PN) form a specialized extracellular matrix around certain highly active neurons within the central nervous system and may help to stabilize synaptic contacts, promote local ion homeostasis, or play a protective role. Within the ocular motor system, excitatory burst neurons and omnipause neurons are highly active cells that generate rapid eye movements - saccades; both groups of neurons contain the calcium-binding protein parvalbumin and are ensheathed by PN. Experimental lesions of excitatory burst neurons and omnipause neurons cause slowing or complete loss of saccades. Selective palsy of saccades in humans is reported following cardiac surgery, but such cases have shown normal brainstem neuroimaging, with only one clinicopathological study that demonstrated paramedian pontine infarction. Our objective was to test the hypothesis that lesions of PN surrounding these brainstem saccade-related neurons may cause saccadic palsy. METHODS: Together with four controls we studied the brain of a patient who had developed a permanent selective saccadic palsy following cardiac surgery and died several years later. Sections of formalin-fixed paraffin-embedded brainstem blocks were applied to double-immunoperoxidase staining of parvalbumin and three different components of PN. Triple immunofluorescence labeling for all PN components served as internal controls. Combined immunostaining of parvalbumin and synaptophysin revealed the presence of synapses. RESULTS: Excitatory burst neurons and omnipause neurons were preserved and still received synaptic input, but their surrounding PN showed severe loss or fragmentation. INTERPRETATION: Our findings support current models and experimental studies of the brainstem saccade-generating neurons and indicate that damage to PN may permanently impair the function of these neurons that the PN ensheathe. How a postulated hypoxic mechanism could selectively damage the PN remains unclear. We propose that the well-studied saccadic eye movement system provides an accessible model to evaluate the role of PN in health and disease.

Funding information:
  • NINDS NIH HHS - 4R00NS057944-03(United States)

The astrocytic lineage marker calmodulin-regulated spectrin-associated protein 1 (Camsap1): phenotypic heterogeneity of newly born Camsap1-expressing cells in injured mouse brain.

  • Yoshioka N
  • J. Comp. Neurol.
  • 2012 Apr 15

Literature context:


Abstract:

Calmodulin-regulated spectrin-associated protein 1 (Camsap1) has been recognized as a new marker for astrocytic lineage cells and is expressed on mature astrocytes in the adult brain (Yamamoto et al. [2009] J. Neurosci. Res. 87:503–513). In the present study, we found that newly born Camsap1-expressing cells exhibited regional heterogeneity in an early phase after stab injury of the mouse brain. In the surrounding area of the lesion site, Camsap1 was expressed on quiescent astrocytes. At 3 days after injury, Camsap1 immunoreactivity was upregulated on glial fibrillary acidic protein-immunoreactive (GFAP-ir) astrocytes. Some of these astrocytes incorporated bromodeoxyuridine (BrdU) together with re-expression of the embryonic cytoskeleton protein nestin. In the neighboring region of the lesion cavity, Camsap1 was expressed on GFAP-negative cells. At 3 days after injury, GFAP-ir astrocytes were absent around the lesion cavity. At this stage, NG2-ir cells immunopositive for Camsap1 and immunonegative for GFAP were distributed in border of the lesion cavity. By 10 days, Camsap1 immunoreactivity was exclusively detected on GFAP-ir reactive astrocytes devoid of NG2 immunoreactivity. BrdU pulse-chase labeling assay suggested the differentiation of Camsap1+/NG2+ cells into Camsap1+/GFAP+ astrocytes. In the subependymal zone of the lateral ventricle, Camsap1-ir cells increased after injury. Camsap1 immunoreactivity was distributed on ependymal and subependymal cells bearing various astrocyte markers, and BrdU incorporation was enhanced on such Camsap1-ir cells after injury. These results suggest that newly born reactive astrocytes are derived from heterogeneous Camsap1-expressing cells in the injured brain.

Funding information:
  • NIDDK NIH HHS - R01 DK084352(United States)

Suppression of fibrotic scar formation promotes axonal regeneration without disturbing blood-brain barrier repair and withdrawal of leukocytes after traumatic brain injury.

  • Yoshioka N
  • J. Comp. Neurol.
  • 2010 Sep 15

Literature context:


Abstract:

The fibrotic scar containing type IV collagen (Col IV) formed in a lesion site is considered as an obstacle to axonal regeneration, because intracerebral injection of 2,2'-dipyridyl (DPY), an inhibitor of Col IV triple-helix formation, suppresses fibrotic scar formation in the lesion site and promotes axonal regeneration. To determine the role of the fibrotic scar on the healing process of injured central nervous system (CNS), the restoration of blood-brain barrier (BBB) and withdrawal of inflammatory leukocytes were examined in mice subjected to unilateral transection of the nigrostriatal dopaminergic pathway and intracerebral DPY injection. At 5 days after injury, destruction of BBB represented by leakage of Evans blue (EB) and widespread infiltration of CD45-immunoreactive leukocytes was observed around the lesion site, whereas reactive astrocytes increased surrounding the BBB-destroyed area. By 2 weeks after injury, the region of EB leakage and the diffusion of leukocytes were restricted to the inside of the fibrotic scar, and reactive astrocytes gathered around the fibrotic scar. In the DPY-treated lesion site, formation of the fibrotic scar was suppressed (84% decrease in Col IV-deposited area), reactive astrocytes occupied the lesion center, and areas of both EB leakage and leukocyte infiltration decreased by 86%. DPY treatment increased the number of regenerated dopaminergic axons by 2.53-fold. These results indicate that suppression of fibrotic scar formation does not disturb the healing process in damaged CNS, and suggest that this strategy is a reliable tool to promote axonal regeneration after traumatic injury in the CNS.

Funding information:
  • NHGRI NIH HHS - R01 HG004744-01(United States)

Cellular and subcellular localization of Kir2.1 subunits in neurons and glia in piriform cortex with implications for K+ spatial buffering.

  • Howe MW
  • J. Comp. Neurol.
  • 2008 Feb 10

Literature context:


Abstract:

Potassium channels of the Kir2 family are widely expressed in neurons and glia, where they form strong inwardly rectifying channels. Existing functional hypotheses for these channels in neurons are based on the weak outward conductance, whereas the leading hypothesis for glia, that they promote potassium spatial buffering, is based on inward conductance. Although the spatial buffering hypothesis has been confirmed for Müller glia in retina, many aspects of Kir2 channels that will be required for understanding their functional roles in neurons and other forms of glia have received little or no study. Particularly striking is the paucity of data regarding their cellular and subcellular localization. We address this gap for Kir2.1-containing channels by using light and electron microscopic immunocytochemistry. The analysis was of piriform cortex, a highly epileptogenic area of cerebral cortex, where pyramidal cells have K(+)-selective strong inward rectification like that observed in Müller cells, where Kir2.1 is the dominant Kir2 subunit. Pyramidal cells in adult piriform cortex also lack I(h), the mixed Na(+)-K(+) current that mediates a slower form of strong inward rectification in large pyramidal cells in neocortex and hippocampus. The experiments demonstrated surface expression of Kir2.1-containing channels in astrocytes and in multiple populations of pyramidal and nonpyramidal cells. Findings for astrocytes were not consistent with predictions for K(+) spatial buffering over substantial distance. However, findings for pyramidal cells suggest that they could be a conduit for spatially buffering K(+) when it is highly elevated during seizure.

Funding information:
  • NIDA NIH HHS - R00DA024754(United States)

Differential response of arcuate proopiomelanocortin- and neuropeptide Y-containing neurons to the lesion produced by gold thioglucose administration.

  • Homma A
  • J. Comp. Neurol.
  • 2006 Nov 1

Literature context:


Abstract:

The effect of gold thioglucose (GTG) administration on neurons containing feeding-related peptides in the hypothalamic arcuate nucleus was examined in mice. Intraperitoneal GTG injection increased the body weight and produced a hypothalamic lesion that extended from the ventral part of the ventromedial nucleus to the dorsal part of the arcuate nucleus. Neurons containing proopiomelanocortin (POMC) and neuropeptide Y (NPY) present in the dorsal part of the arcuate nucleus were destroyed by GTG. In addition, the peptide-containing fibers that extended from the remaining arcuate neurons were degenerated at the lesion site. The number of POMC-containing fibers in the paraventricular nucleus, dorsomedial nucleus, and lateral hypothalamus was found to have decreased significantly when examined at 2 days and 2 weeks after the GTG treatment. In contrast, the number of NPY-containing fibers in the lateral hypothalamus remained unchanged after the GTG treatment, probably because of the presence of an unaffected NPY-containing fiber pathway passing through the tuberal region and projecting onto the lateral hypothalamus. The number of NPY-immunoreactive fibers in the paraventricular and dorsomedial nuclei showed a moderate but significant decrease at 2 days after the GTG treatment, but it recovered to the normal levels 2 weeks later. The NPY-containing fibers were found to have regenerated across the lesion site 2 weeks later, and this might contribute to the recovery of the NPY-immunoreactive fibers in these regions. The present results first demonstrate that POMC- and NPY-containing neurons in the arcuate nucleus respond differently to the lesion produced by the GTG treatment.

Funding information:
  • NEI NIH HHS - EY11105(United States)
  • NIGMS NIH HHS - R01-GM65466-01(United States)