X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Glial Fibrillary Acidic Protein (Multipurpose) antibody

RRID:AB_10013382

Antibody ID

AB_10013382

Target Antigen

GFAP cat, cow, dog, human, mouse, rat, sheep

Vendor

Agilent

Cat Num

Z0334

Proper Citation

(Agilent Cat# Z0334, RRID:AB_10013382)

Clonality

polyclonal antibody

Host Organism

rabbit

Comments

Excellent specificity and precipitation ability. Optimized for a variety of applications with validated protocols. Can be used on frozen and formalin-fixed, paraffin-embedded tissue sections.. Original Manufacturer: Dako. Now part of Agilent.

Publications that use this research resource

Grafts of Olfactory Stem Cells Restore Breathing and Motor Functions after Rat Spinal Cord Injury.

  • Stamegna JC
  • J. Neurotrauma
  • 2018 Aug 1

Literature context: i-GFAP (1/500, Dako Cat# Z0334) RRID:AB_10013382 Goat anti-rabbit IgG conjugated


Abstract:

The transplantation of olfactory ecto-mesenchymal stem cells (OEMSCs) could be a helpful therapeutic strategy for spinal cord repair. Using an acute rat model of high cervical contusion that provokes a persistent hemidiaphragmatic and foreleg paralysis, we evaluated the therapeutic effect of a delayed syngeneic transplantation (two days post-contusion) of OEMSCs within the injured spinal cord. Respiratory function was assessed using diaphragmatic electromyography and neuroelectrophysiological recordings of phrenic nerves (innervating the diaphragm). Locomotor function was evaluated using the ladder-walking locomotor test. Cellular reorganization in the injured area was also studied using immunohistochemical and microscopic techniques. We report a substantial improvement in breathing movements, in activities of the ipsilateral phrenic nerve and ipsilateral diaphragm, and also in locomotor abilities four months post-transplantation with nasal OEMSCs. Moreover, in the grafted spinal cord, axonal disorganization and inflammation were reduced. Some grafted stem cells adopted a neuronal phenotype, and axonal sparing was observed in the injury site. The therapeutic effect on the supraspinal command is presumably because of both neuronal replacements and beneficial paracrine effects on the injury area. Our study provides evidence that nasal OEMSCs could be a first step in clinical application, particularly in patients with reduced breathing/locomotor movements.

Funding information:
  • PHS HHS - 78795(United States)

Generation of six multiple sclerosis patient-derived induced pluripotent stem cell lines.

  • Miquel-Serra L
  • Stem Cell Res
  • 2018 Jul 3

Literature context: 1:501:400Covance, MMS-435PDako, Z0334Sigma, A5228Dako, A0008R&D Syste


Abstract:

Multiple sclerosis (MS) is considered a chronic autoimmune disease of the central nervous system that leads to gliosis, demyelination, axonal damage and neuronal death. The MS disease aetiology is unknown, though a polymorphism of the TNFRSF1A gene, rs1800693, is known to confer an increased risk for MS. Using retroviral delivery of reprogramming transgenes, we generated six MS patient-specific iPSC lines with two distinct genotypes, CC or TT, of the polymorphism rs1800693. iPSC lines had normal karyotype, expressed pluripotency genes and differentiated into the three germ layers. These lines offer a good tool to study MS pathomechanisms and for drug testing.

Funding information:
  • NIDDK NIH HHS - DK075386(United States)

Behavioural alterations and morphological changes are attenuated by the lack of TRPA1 receptors in the cuprizone-induced demyelination model in mice.

  • Bölcskei K
  • J. Neuroimmunol.
  • 2018 Jul 15

Literature context: No Z0334; Antibody Registry No AB_10013382) to visualize astrocytes, anti-


Abstract:

We have recently reported that the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor deficiency significantly attenuated cuprizone-induced demyelination by reducing the apoptosis of mature oligodendrocytes. The aim of the present study was to gather additional data on the role of TRPA1 by investigating the time course of behavioural alterations and morphological changes in cuprizone-treated TRPA1 receptor gene-deficient mice. Demyelination was induced by feeding male wild-type (WT) and TRPA1 gene-deleted (TRPA1 KO) mice with 0.2% cuprizone for 6 weeks. Behavioural tests were performed once per week to follow cuprizone-induced functional changes. Mechanonociceptive thresholds were investigated by a dynamic plantar aesthesiometer and von Frey filaments. Motor performance was assessed by accelerating RotaRod and horizontal grid tests. For the study of spontaneous activity, the open field test was used. The time course of corpus callosum demyelination was also followed weekly by magnetic resonance imaging (MRI). Histological analysis of myelin loss was performed with Luxol Fast Blue (LFB) staining at week 3 and electron microscopy (EM) at week 6. Astrocyte and microglia accumulation at week 3 was assessed by immunohistochemistry (IHC). Cuprizone treatment induced no changes in mechanonociception or motor performance. In the open arena, cuprizone-treated mice spent more time with locomotion, their mean velocity was significantly higher and the distance they travelled was longer than untreated mice. No statistical difference was detected between WT and TRPA1 KO mice in these parameters. On the other hand, significantly increased rearing behaviour was induced in WT mice compared to TRPA1 KO animals. Morphological changes detected with MRI, LFB, IHC and EM analysis revealed reduced damage of the myelin and attenuated accumulation of astrocytes and microglia in cuprizone-treated TRPA1 KO animals, at each examined time point. Our recent data further suggest that inhibition of TRPA1 receptors could be a promising therapeutic approach to limit central nervous system damage in demyelinating diseases.

Funding information:
  • NHLBI NIH HHS - HL59469(United States)

Morphometric analysis of astrocytes in brainstem respiratory regions.

  • Sheikhbahaei S
  • J. Comp. Neurol.
  • 2018 Jun 11

Literature context: : http://scicrunch.org/resolver/RRID:AB_10013382) was isolated from cow spinal c


Abstract:

Astrocytes, the most abundant and structurally complex glial cells of the central nervous system, are proposed to play an important role in modulating the activities of neuronal networks, including respiratory rhythm-generating circuits of the preBötzinger complex (preBötC) located in the ventrolateral medulla of the brainstem. However, structural properties of astrocytes residing within different brainstem regions are unknown. In this study astrocytes in the preBötC, an intermediate reticular formation (IRF) region with respiratory-related function, and a region of the nucleus tractus solitarius (NTS) in adult rats were reconstructed and their morphological features were compared. Detailed morphological analysis revealed that preBötC astrocytes are structurally more complex than those residing within the functionally distinct neighboring IRF region, or the NTS, located at the dorsal aspect of the medulla oblongata. Structural analyses of the brainstem microvasculature indicated no significant regional differences in vascular properties. We hypothesize that high morphological complexity of preBötC astrocytes reflects their functional role in providing structural/metabolic support and modulation of the key neuronal circuits essential for breathing, as well as constraints imposed by arrangements of associated neurons and/or other local structural features of the brainstem parenchyma. This article is protected by copyright. All rights reserved.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Repurposing HAMI3379 to Block GPR17 and Promote Rodent and Human Oligodendrocyte Differentiation.

  • Merten N
  • Cell Chem Biol
  • 2018 Jun 21

Literature context: bbit anti-GFAP DAKO Cat# Z0334; RRID:AB_10013382 rabbit anti-GPR17 Cayman Cat# 1


Abstract:

Identification of additional uses for existing drugs is a hot topic in drug discovery and a viable alternative to de novo drug development. HAMI3379 is known as an antagonist of the cysteinyl-leukotriene CysLT2 receptor, and was initially developed to treat cardiovascular and inflammatory disorders. In our study we identified HAMI3379 as an antagonist of the orphan G protein-coupled receptor GPR17. HAMI3379 inhibits signaling of recombinant human, rat, and mouse GPR17 across various cellular backgrounds, and of endogenous GPR17 in primary rodent oligodendrocytes. GPR17 blockade by HAMI3379 enhanced maturation of primary rat and mouse oligodendrocytes, but was without effect in oligodendrocytes from GPR17 knockout mice. In human oligodendrocytes prepared from inducible pluripotent stem cells, GPR17 is expressed and its activation impaired oligodendrocyte differentiation. HAMI3379, conversely, efficiently favored human oligodendrocyte differentiation. We propose that HAMI3379 holds promise for pharmacological exploitation of orphan GPR17 to enhance regenerative strategies for the promotion of remyelination in patients.

Funding information:
  • NIGMS NIH HHS - GM30186(United States)

A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain.

  • Kleaveland B
  • Cell
  • 2018 Jun 4

Literature context: o RRID:AB_10013382 Bacterial and Virus Strains


Abstract:

Noncoding RNAs (ncRNAs) play increasingly appreciated gene-regulatory roles. Here, we describe a regulatory network centered on four ncRNAs-a long ncRNA, a circular RNA, and two microRNAs-using gene editing in mice to probe the molecular consequences of disrupting key components of this network. The long ncRNA Cyrano uses an extensively paired site to miR-7 to trigger destruction of this microRNA. Cyrano-directed miR-7 degradation is much more effective than previously described examples of target-directed microRNA degradation, which come primarily from studies of artificial and viral RNAs. By reducing miR-7 levels, Cyrano prevents repression of miR-7-targeted mRNAs and enables accumulation of Cdr1as, a circular RNA known to regulate neuronal activity. Without Cyrano, excess miR-7 causes cytoplasmic destruction of Cdr1as in neurons, in part through enhanced slicing of Cdr1as by a second miRNA, miR-671. Thus, several types of ncRNAs can collaborate to establish a sophisticated regulatory network.

Funding information:
  • NCATS NIH HHS - UL1 TR000371(United States)

Evidence for neurogenesis in the medial cortex of the leopard gecko, Eublepharis macularius.

  • McDonald RP
  • Sci Rep
  • 2018 Jun 25

Literature context: overnight at 4 °C (Dako, Z0334, RRID:AB_10013382) 1:1000 in 1XPBS for 1 hour at


Abstract:

Although lizards are often described as having robust neurogenic abilities, only a handful of the more than 6300 species have been explored. Here, we provide the first evidence of homeostatic neurogenesis in the leopard gecko (Eublepharis macularius). We focused our study on the medial cortex, homologue of the mammalian hippocampal formation. Using immunostaining, we identified proliferating pools of neural stem/progenitor cells within the sulcus septomedialis, the pseudostratified ventricular zone adjacent to the medial cortex. Consistent with their identification as radial glia, these cells expressed SOX2, glial fibrillary acidic protein, and Vimentin, and demonstrated a radial morphology. Using a 5-bromo-2'-deoxyuridine cell tracking strategy, we determined that neuroblast migration from the ventricular zone to the medial cortex takes ~30-days, and that newly generated neuronal cells survived for at least 140-days. We also found that cell proliferation within the medial cortex was not significantly altered following rupture of the tail spinal cord (as a result of the naturally evolved process of caudal autotomy). We conclude that the sulcus septomedialis of the leopard gecko demonstrates all the hallmarks of a neurogenic niche.

Funding information:
  • Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturell - 400358()
  • NCI NIH HHS - R01 CA97063(United States)

Permanent Whisker Removal Reduces the Density of c-Fos+ Cells and the Expression of Calbindin Protein, Disrupts Hippocampal Neurogenesis and Affects Spatial-Memory-Related Tasks.

  • Gonzalez-Perez O
  • Front Cell Neurosci
  • 2018 Jun 6

Literature context: Cat # Z0334, RRID:AB_10013382), rabbit anti-Sox2 (1:500, Abca


Abstract:

Facial vibrissae, commonly known as whiskers, are the main sensitive tactile system in rodents. Whisker stimulation triggers neuronal activity that promotes neural plasticity in the barrel cortex (BC) and helps create spatial maps in the adult hippocampus. Moreover, activity-dependent inputs and calcium homeostasis modulate adult neurogenesis. Therefore, the neuronal activity of the BC possibly regulates hippocampal functions and neurogenesis. To assess whether tactile information from facial whiskers may modulate hippocampal functions and neurogenesis, we permanently eliminated whiskers in CD1 male mice and analyzed the effects in cellular composition, molecular expression and memory processing in the adult hippocampus. Our data indicated that the permanent deprivation of whiskers reduced in 4-fold the density of c-Fos+ cells (a calcium-dependent immediate early gene) in cornu ammonis subfields (CA1, CA2 and CA3) and 4.5-fold the dentate gyrus (DG). A significant reduction in the expression of calcium-binding proteincalbindin-D28k was also observed in granule cells of the DG. Notably, these changes coincided with an increase in apoptosis and a decrease in the proliferation of neural precursor cells in the DG, which ultimately reduced the number of Bromodeoxyuridine (BrdU)+NeuN+ mature neurons generated after whisker elimination. These abnormalities in the hippocampus were associated with a significant impairment of spatial memory and navigation skills. This is the first evidence indicating that tactile inputs from vibrissal follicles strongly modify the expression of c-Fos and calbindin in the DG, disrupt different aspects of hippocampal neurogenesis, and support the notion that spatial memory and navigation skills strongly require tactile information in the hippocampus.

Funding information:
  • NHLBI NIH HHS - HL097817(United States)

BAI1 Suppresses Medulloblastoma Formation by Protecting p53 from Mdm2-Mediated Degradation.

  • Zhu D
  • Cancer Cell
  • 2018 Jun 11

Literature context: RRID:AB_10013382 Bacterial and Virus Strains


Abstract:

Adhesion G protein-coupled receptors (ADGRs) encompass 33 human transmembrane proteins with long N termini involved in cell-cell and cell-matrix interactions. We show the ADGRB1 gene, which encodes Brain-specific angiogenesis inhibitor 1 (BAI1), is epigenetically silenced in medulloblastomas (MBs) through a methyl-CpG binding protein MBD2-dependent mechanism. Knockout of Adgrb1 in mice augments proliferation of cerebellar granule neuron precursors, and leads to accelerated tumor growth in the Ptch1+/- transgenic MB mouse model. BAI1 prevents Mdm2-mediated p53 polyubiquitination, and its loss substantially reduces p53 levels. Reactivation of BAI1/p53 signaling axis by a brain-permeable MBD2 pathway inhibitor suppresses MB growth in vivo. Altogether, our data define BAI1's physiological role in tumorigenesis and directly couple an ADGR to cancer formation.

Funding information:
  • Canadian Institutes of Health Research - ROP99020(Canada)
  • NCI NIH HHS - P20 CA151129()
  • NCI NIH HHS - P30 CA138292()
  • NCI NIH HHS - R01 CA086335()
  • NCI NIH HHS - R01 CA163722()
  • NINDS NIH HHS - P30 NS055077()
  • NINDS NIH HHS - R01 NS096236()

Oligodendrocyte death, neuroinflammation, and the effects of minocycline in a rodent model of nonarteritic anterior ischemic optic neuropathy (rNAION).

  • Mehrabian Z
  • Mol. Vis.
  • 2018 May 21

Literature context: ated using an antibody to GFAP (RRID:AB_10013382) from DAKO Cytomation (Glostrup


Abstract:

Purpose: Optic nerve (ON) damage following nonarteritic anterior ischemic optic neuropathy (NAION) and its models is associated with neurodegenerative inflammation. Minocycline is a tetracycline derivative antibiotic believed to exert a neuroprotective effect by selective alteration and activation of the neuroinflammatory response. We evaluated minocycline's post-induction ability to modify early and late post-ischemic inflammatory responses and its retinal ganglion cell (RGC)-neuroprotective ability. Methods: We used the rodent NAION (rNAION) model in male Sprague-Dawley rats. Animals received either vehicle or minocycline (33 mg/kg) daily intraperitoneally for 28 days. Early (3 days) ON-cytokine responses were evaluated, and oligodendrocyte death was temporally evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. Cellular inflammation was evaluated with immunohistochemistry, and RGC preservation was compared with stereology of Brn3a-positive cells in flat mounted retinas. Results: Post-rNAION, oligodendrocytes exhibit a delayed pattern of apoptosis extending over a month, with extrinsic monocyte infiltration occurring only in the primary rNAION lesion and progressive distal microglial activation. Post-induction minocycline failed to improve retinal ganglion cell survival compared with the vehicle treated (893.14 vs. 920.72; p>0.9). Cytokine analysis of the rNAION lesion 3 days post-induction revealed that minocycline exert general inflammatory suppression without selective upregulation of cytokines associated with the proposed alternative or neuroprotective M2 inflammatory pathway. Conclusions: The pattern of cytokine release, extended temporal window of oligodendrocyte death, and progressive microglial activation suggests that selective neuroimmunomodulation, rather than general inflammatory suppression, may be required for effective repair strategies in ischemic optic neuropathies.

Funding information:
  • NEI NIH HHS - R01 EY015304()
  • NINDS NIH HHS - NS065926(United States)

Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis.

  • Youssef M
  • Hippocampus
  • 2018 May 9

Literature context: Cat# Z033429-2, RRID:AB_10013382), rabbit anti-Ki67 1:500 (Abcam


Abstract:

Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum et al., 2014), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis. This article is protected by copyright. All rights reserved.

Funding information:
  • Intramural NIH HHS - (United States)
  • NIMH NIH HHS - F30 MH111209()
  • NIMH NIH HHS - R01 MH091844()
  • NIMH NIH HHS - R56 MH106809()

A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment.

  • Griveau A
  • Cancer Cell
  • 2018 May 14

Literature context: o Cat# Z0334; RRID:AB_10013382 Rabbit polyclonal anti-Histone


Abstract:

Gliomas comprise heterogeneous malignant glial and stromal cells. While blood vessel co-option is a potential mechanism to escape anti-angiogenic therapy, the relevance of glial phenotype in this process is unclear. We show that Olig2+ oligodendrocyte precursor-like glioma cells invade by single-cell vessel co-option and preserve the blood-brain barrier (BBB). Conversely, Olig2-negative glioma cells form dense perivascular collections and promote angiogenesis and BBB breakdown, leading to innate immune cell activation. Experimentally, Olig2 promotes Wnt7b expression, a finding that correlates in human glioma profiling. Targeted Wnt7a/7b deletion or pharmacologic Wnt inhibition blocks Olig2+ glioma single-cell vessel co-option and enhances responses to temozolomide. Finally, Olig2 and Wnt7 become upregulated after anti-VEGF treatment in preclinical models and patients. Thus, glial-encoded pathways regulate distinct glioma-vascular microenvironmental interactions.

Funding information:
  • Intramural NIH HHS - ES016005(United States)

Mesenchymal Stem Cells Form 3D Clusters Following Intraventricular Transplantation.

  • Jungwirth N
  • J. Mol. Neurosci.
  • 2018 May 1

Literature context: Z0334/RRID:AB_10013382


Abstract:

Mesenchymal stem cells (MSCs) are regarded as an immune privileged cell type with numerous regeneration-promoting effects. The in vivo behavior of MSC and underlying mechanisms leading to their regenerative effects are largely unknown. The aims of this study were to comparatively investigate the in vivo behavior of canine (cMSC), human (hMSC), and murine MSC (mMSC) following intra-cerebroventricular transplantation. At 7 days post transplantation (dpt), clusters of cMSC, hMSC, and mMSC were detected within the ventricular system. At 49 dpt, cMSC-transplanted mice showed clusters mostly consisting of extracellular matrix lacking transplanted MSC. Similarly, hMSC-transplanted mice lacked MSC clusters at 49 dpt. Xenogeneic MSC transplantation was associated with a local T lymphocyte-dominated immune reaction at both time points. Interestingly, no associated inflammation was observed following syngeneic mMSC transplantation. In conclusion, transplanted MSC formed intraventricular cell clusters and exhibited a short life span in vivo. Xenogeneically in contrast to syngeneically transplanted MSC triggered a T cell-mediated graft rejection indicating that MSCs are not as immune privileged as previously assumed. However, MSC may mediate their effects by a "hit and run" mechanism and future studies will show whether syngeneically or xenogeneically transplanted MSCs exert better therapeutic effects in animals with CNS disease.

Funding information:
  • Deutsche Forschungsgemeinschaft - BA 815/14-1,()
  • Deutsche Forschungsgemeinschaft - STA 518/4-1()
  • Deutsche Forschungsgemeinschaft - TI 309/4-2()
  • NCRR NIH HHS - P20RR016474(United States)

Identification of a critical sulfation in chondroitin that inhibits axonal regeneration.

  • Pearson CS
  • Elife
  • 2018 May 15

Literature context: RRID:AB_10013382 1/500


Abstract:

The failure of mammalian CNS neurons to regenerate their axons derives from a combination of intrinsic deficits and extrinsic factors. Following injury, chondroitin sulfate proteoglycans (CSPGs) within the glial scar inhibit axonal regeneration, an action mediated by the sulfated glycosaminoglycan (GAG) chains of CSPGs, especially those with 4-sulfated (4S) sugars. Arylsulfatase B (ARSB) selectively cleaves 4S groups from the non-reducing ends of GAG chains without disrupting other, growth-permissive motifs. We demonstrate that ARSB is effective in reducing the inhibitory actions of CSPGs both in in vitro models of the glial scar and after optic nerve crush (ONC) in adult mice. ARSB is clinically approved for replacement therapy in patients with mucopolysaccharidosis VI and therefore represents an attractive candidate for translation to the human CNS.

Funding information:
  • National Institutes of Health - 1ZIAHL006135()
  • NIEHS NIH HHS - 2T32ES007329-10(United States)

Preterm birth disrupts cerebellar development by affecting granule cell proliferation program and Bergmann glia.

  • Iskusnykh IY
  • Exp. Neurol.
  • 2018 May 18

Literature context: t, 1:200, RRID:AB_10013382), anti-Pax2 (Proteintech, 21385


Abstract:

Preterm birth is a leading cause of long-term motor and cognitive deficits. Clinical studies suggest that some of these deficits result from disruption of cerebellar development, but the mechanisms that mediate cerebellar abnormalities in preterm infants are largely unknown. Furthermore, it remains unclear whether preterm birth and precocious exposure to the ex-utero environment directly disrupt cerebellar development or indirectly by increasing the probability of cerebellar injury, including that resulting from clinical interventions and protocols associated with the care of preterm infants. In this study, we analyzed the cerebellum of preterm pigs delivered via c-section at 91% term and raised for 10 days, until term-equivalent age. The pigs did not receive any treatments known or suspected to affect cerebellar development and had no evidence of brain damage. Term pigs sacrificed at birth were used as controls. Immunohistochemical analysis revealed that preterm birth did not affect either size or numbers of Purkinje cells or molecular layer interneurons at term-equivalent age. The number of granule cell precursors and Bergmann glial fibers, however, were reduced in preterm pigs. Preterm pigs had reduced proliferation but not differentiation of granule cells. qRT-PCR analysis of laser capture microdissected external granule cell layer showed that preterm pigs had a reduced expression of Ccnd1 (Cyclin D1), Ccnb1 (Cyclin B1), granule cell master regulatory transcription factor Atoh1, and signaling molecule Jag1. In vitro rescue experiments identified Jag1 as a central granule cell gene affected by preterm birth. Thus, preterm birth and precocious exposure to the ex-utero environment disrupt cerebellum by modulating expression of key cerebellar developmental genes, predominantly affecting development of granule precursors and Bergmann glia.

Funding information:
  • NICHD NIH HHS - T32 HD007491(United States)

Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys.

  • Martinot AJ
  • Cell
  • 2018 May 17

Literature context: (GFAP) Dako Cat # Z0334; RRID:AB_10013382 Bacterial and Virus Strains


Abstract:

The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.

Funding information:
  • NIAID NIH HHS - 2R01 AI056153(United States)
  • NIAID NIH HHS - U19 AI096040()
  • NIAID NIH HHS - U19 AI128751()
  • NIAID NIH HHS - UM1 AI124377()

Brain phospholipid precursors administered post-injury reduce tissue damage and improve neurological outcome in experimental traumatic brain injury.

  • Thau-Zuchman O
  • J. Neurotrauma
  • 2018 May 17

Literature context: arpinteria, CA; Cat# Z0334 Lot# RRID:AB_10013382); goat anti-ionized calcium bin


Abstract:

Traumatic brain injury (TBI) leads to cellular loss, destabilisation of membranes, disruption of synapses and altered brain connectivity, and increased risk of neurodegenerative disease. A significant and long-lasting decrease in phospholipids (PL), essential membrane constituents, has recently been reported in plasma and brain tissue, in human and experimental TBI. We hypothesised that supporting PL synthesis post-injury could improve outcome after TBI. We tested this hypothesis using a multi-nutrient combination designed to support the biosynthesis of phospholipids and available for clinical use. The multi-nutrient Fortasyn® Connect (FC) contains polyunsaturated omega-3 fatty acids, choline, uridine, vitamins, co-factors required for PL biosynthesis, and has been shown to have significant beneficial effects in early Alzheimer's disease. Male C57BL/6 mice received a controlled cortical impact injury and then were fed a control diet or a diet enriched with FC for 70 days. FC led to a significantly improved sensorimotor outcome and cognition, reduced lesion size and oligodendrocyte loss, and it restored myelin. It reversed the loss of the synaptic protein synaptophysin and decreased levels of the axon growth inhibitor Nogo-A, thus creating a permissive environment. It decreased microglia activation and the rise in ß-amyloid precursor protein and restored the depressed neurogenesis. The effects of this medical multi-nutrient suggest that support of PL biosynthesis after TBI, a new treatment paradigm, has significant therapeutic potential in this neurological condition for which there is no satisfactory treatment. The multi-nutrient tested has been used in dementia patients, is safe and well-tolerated, which would enable rapid clinical exploration in TBI.

Funding information:
  • Medical Research Council - K-0912(United Kingdom)

Soluble TNFα Signaling within the Spinal Cord Contributes to the Development of Autonomic Dysreflexia and Ensuing Vascular and Immune Dysfunction after Spinal Cord Injury.

  • Mironets E
  • J. Neurosci.
  • 2018 Apr 25

Literature context: ti-GFAP (Dako catalog #Z0334, RRID:AB_10013382) to visualize astrocytes. After


Abstract:

Cardiovascular disease and susceptibility to infection are leading causes of morbidity and mortality for individuals with spinal cord injury (SCI). A major contributor to these is autonomic dysreflexia (AD), an amplified reaction of the autonomic nervous system (hallmarked by severe hypertension) in response to sensory stimuli below the injury. Maladaptive plasticity of the spinal sympathetic reflex circuit below the SCI results in AD intensification over time. Mechanisms underlying this maladaptive plasticity are poorly understood, restricting the identification of treatments. Thus, no preventative treatments are currently available. Neuroinflammation has been implicated in other pathologies associated with hyperexcitable neural circuits. Specifically, the soluble form of TNFα (sTNFα) is known to play a role in neuroplasticity. We hypothesize that persistent expression of sTNFα in spinal cord underlies AD exacerbation. To test this, we intrathecally administered XPro1595, a biologic that renders sTNFα nonfunctional, after complete, high-level SCI in female rats. This dramatically attenuated the intensification of colorectal distension-induced and naturally occurring AD events. This improvement is mediated via decreased sprouting of nociceptive primary afferents and activation of the spinal sympathetic reflex circuit. We also examined peripheral vascular function using ex vivo pressurized arterial preparations and immune function via flow cytometric analysis of splenocytes. Diminishing AD via pharmacological inhibition of sTNFα mitigated ensuing vascular hypersensitivity and immune dysfunction. This is the first demonstration that neuroinflammation-induced sTNFα is critical for altering the spinal sympathetic reflex circuit, elucidating a novel mechanism for AD. Importantly, we identify the first potential pharmacological, prophylactic treatment for this life-threatening syndrome.SIGNIFICANCE STATEMENT Autonomic dysreflexia (AD), a disorder that develops after spinal cord injury (SCI) and is hallmarked by sudden, extreme hypertension, contributes to cardiovascular disease and susceptibility to infection, respectively, two leading causes of mortality and morbidity in SCI patients. We demonstrate that neuroinflammation-induced expression of soluble TNFα plays a critical role in AD, elucidating a novel underlying mechanism. We found that intrathecal administration after SCI of a biologic that inhibits soluble TNFα signaling dramatically attenuates AD and significantly reduces AD-associated peripheral vascular and immune dysfunction. We identified mechanisms behind diminished plasticity of neuronal populations within the spinal sympathetic reflex circuit. This study is the first to pinpoint a potential pharmacological, prophylactic strategy to attenuate AD and ensuing cardiovascular and immune dysfunction.

Funding information:
  • NHLBI NIH HHS - R01 HL139754()
  • NIDDK NIH HHS - DK62434(United States)
  • NINDS NIH HHS - R01 NS085426()
  • NINDS NIH HHS - R01 NS106908()

Recombinant interleukin-4 alleviates mechanical allodynia via injury-induced interleukin-4 receptor alpha in spinal microglia in a rat model of neuropathic pain.

  • Okutani H
  • Glia
  • 2018 Apr 25

Literature context: Glostrup, Denmark; Cat# Z0334, RRID:AB_10013382), and rabbit anti-lymphocyte an


Abstract:

Glial cells play important roles in the development and maintenance of neuropathic pain. In particular, activated microglia in the spinal cord facilitate the hyper-excitability of dorsal horn neurons after peripheral nerve injury via pro-inflammatory molecules. In this study, we investigated the possible involvement of the anti-inflammatory cytokine, interleukin-4 (IL-4), in neuropathic pain. We did not detect the expression of IL-4 mRNA in the rat dorsal root ganglion or spinal cord; however, peripheral nerve injury induced the expression of IL-4 receptor (IL-4R) alpha mRNA in the spinal cord. A histological analysis revealed that nerve injury induced IL-4R alpha mRNA in activated spinal microglia ipsilateral to the injury site. Additionally, the increases in IL-4R alpha were coincident with the increased expression of phosphorylated signal transducer and activator of transcription 6 (pSTAT6) in spinal microglia. Intrathecal administration of recombinant IL-4 suppressed mechanical hypersensitivity in neuropathic rats, and the analgesic effect of IL-4 was accompanied by further enhancement of pSTAT6 expression in spinal microglia. Taken together, these results suggest that the adaptive responses of microglia to nerve injury involve both inflammatory and anti-inflammatory signaling, including IL-4R alpha and pSTAT6. These findings support that utilizing the endogenous anti-nociceptive activity of IL-4R alpha may modify the cell lineage of pro-nociceptive microglia, thus providing a novel therapeutic strategy for neuropathic pain.

Funding information:
  • NCI NIH HHS - P30 CA006516(United States)

Small Interfering RNA-Mediated Control of Virus Replication in the CNS Is Therapeutic and Enables Natural Immunity to West Nile Virus.

  • Beloor J
  • Cell Host Microbe
  • 2018 Apr 11

Literature context: ibody Dako Cat# Z0334; RRID:AB_10013382 FITC goat polyclonal anti-rabbi


Abstract:

No vaccines or therapeutics are licensed for West Nile virus (WNV), a mosquito-transmitted neuroencephalitic flavivirus. The small interfering RNA siFvEJW targets a conserved sequence within the WNV E protein and limits virus infection. Using a rabies virus-derived neuron-targeting peptide (RVG9R) and an intranasal route for delivering siFvEJW to the CNS, we demonstrate that treatment of WNV-infected mice at late stages of neuroinvasive disease results in recovery. Selectively targeting virus in the CNS lowers viral burdens in the brain, reduces neuropathology, and results in a 90% survival rate at 5-6 days post-infection (when viral titers peak in the CNS), while placebo-treated mice succumb by days 9-10. Importantly, CNS virus clearance is achieved by humoral and cell-mediated immune responses to WNV infection in peripheral tissues, which also engender sterilizing immunity against subsequent WNV infection. These results indicate that intranasal RVG9R-siRNA treatment offers efficient late-stage therapy and facilitates natural long-term immunity against neuroinvasive flaviviruses.

Funding information:
  • NHLBI NIH HHS - U01-HL66618(United States)

Genetic deletion of xCT attenuates peripheral and central inflammation and mitigates LPS-induced sickness and depressive-like behavior in mice.

  • Albertini G
  • Glia
  • 2018 Apr 25

Literature context: Z0334, Dako, Glostrup, Denmark; RRID:AB_10013382) antibodies. The next day, memb


Abstract:

The communication between the immune and central nervous system (CNS) is affected in many neurological disorders. Peripheral injections of the endotoxin lipopolysaccharide (LPS) are widely used to study this communication: an LPS challenge leads to a biphasic syndrome that starts with acute sickness and is followed by persistent brain inflammation and chronic behavioral alterations such as depressive-like symptoms. In vitro, the response to LPS treatment has been shown to involve enhanced expression of system xc-. This cystine-glutamate antiporter, with xCT as specific subunit, represents the main glial provider of extracellular glutamate in mouse hippocampus. Here we injected male xCT knockout and wildtype mice with a single intraperitoneal dose of 5 mg/kg LPS. LPS-injection increased hippocampal xCT expression but did not alter the mainly astroglial localization of the xCT protein. Peripheral and central inflammation (as defined by cytokine levels and morphological activation of microglia) as well as LPS-induced sickness and depressive-like behavior were significantly attenuated in xCT-deficient mice compared with wildtype mice. Our study is the first to demonstrate the involvement of system xc- in peripheral and central inflammation in vivo and the potential therapeutic relevance of its inhibition in brain disorders characterized by peripheral and central inflammation, such as depression.

Funding information:
  • NIGMS NIH HHS - GM091896(United States)

Genetic detection of Sonic hedgehog (Shh) expression and cellular response in the progression of acute through chronic demyelination and remyelination.

  • Sanchez MA
  • Neurobiol. Dis.
  • 2018 Apr 9

Literature context: ; DAKO/Agilent; Santa Clara, CA RRID:AB_10013382 Goat anti-rabbit (H + L) IgG (A


Abstract:

Multiple sclerosis is a demyelinating disease in which neurological deficits result from damage to myelin, axons, and neuron cell bodies. Prolonged or repeated episodes of demyelination impair remyelination. We hypothesized that augmenting Sonic hedgehog (Shh) signaling in chronically demyelinated lesions could enhance oligodendrogenesis and remyelination. Shh regulates oligodendrocyte development during postnatal myelination, and maintains adult neural stem cells. We used genetic approaches to detect Shh expression and Shh responding cells in vivo. ShhCreERT2 or Gli1CreERT2 mice were crossed to reporter mice for genetic fate-labeling of cells actively transcribing Shh or Gli1, an effective readout of canonical Shh signaling. Tamoxifen induction enabled temporal control of recombination at distinct stages of acute and chronic cuprizone demyelination of the corpus callosum. Gli1 fate-labeled cells were rarely found in the corpus callosum with tamoxifen given during acute demyelination stages to examine activated microglia, reactive astrocytes, or remyelinating cells. Gli1 fate-labeled cells, mainly reactive astrocytes, were observed in the corpus callosum with tamoxifen given after chronic demyelination. However, Shh expressing cells were not detected in the corpus callosum during acute or chronic demyelination. Finally, SAG, an agonist of both canonical and type II non-canonical Hedgehog signaling pathways, was microinjected into the corpus callosum after chronic demyelination. Significantly, SAG delivery increased proliferation and enhanced remyelination. SAG did not increase Gli1 fate-labeled cells in the corpus callosum, which may indicate signaling through the non-canonical Hedgehog pathway. These studies demonstrate that Hedgehog pathway interventions may have therapeutic potential to modulate astrogliosis and to promote remyelination after chronic demyelination.

Funding information:
  • NCI NIH HHS - K24 CA139054(United States)

Blockade of sustained tumor necrosis factor in a transgenic model of progressive autoimmune encephalomyelitis limits oligodendrocyte apoptosis and promotes oligodendrocyte maturation.

  • Valentin-Torres A
  • J Neuroinflammation
  • 2018 Apr 24

Literature context: NIF Antibody Registry AB_839504 RRID:AB_10013382 AB_2057371 AB_570666 AB_2096229


Abstract:

BACKGROUND: Tumor necrosis factor (TNF) is associated with several neurodegenerative disorders including multiple sclerosis (MS). Although TNF-targeted therapies have been largely unsuccessful in MS, recent preclinical data suggests selective soluble TNF inhibition can promote remyelination. This has renewed interest in regulation of TNF signaling in demyelinating disease, especially given the limited treatment options for progressive MS. Using a mouse model of progressive MS, this study evaluates the effects of sustained TNF on oligodendrocyte (OLG) apoptosis and OLG precursor cell (OPC) differentiation. METHODS: Induction of experimental autoimmune encephalomyelitis (EAE) in transgenic mice expressing a dominant-negative interferon-γ receptor under the human glial fibrillary acidic protein promoter (GFAPγR1Δ) causes severe non-remitting disease associated with sustained TNF. Therapeutic effects in GFAPγR1Δ mice treated with anti-TNF compared to control antibody during acute EAE were evaluated by assessing demyelinating lesion size, remyelination, OLG apoptosis, and OPC differentiation. RESULTS: More severe and enlarged demyelinating lesions in GFAPγR1Δ compared to wild-type (WT) mice were associated with increased OLG apoptosis and reduced differentiated CC1+Olig2+ OLG within lesions, as well as impaired upregulation of TNF receptor-2, suggesting impaired OPC differentiation. TNF blockade during acute EAE in GFAPγR1Δ both limited OLG apoptosis and enhanced OPC differentiation consistent with reduced lesion size and clinical recovery. TNF neutralization further limited increasing endothelin-1 (ET-1) expression in astrocytes and myeloid cells noted in lesions during disease progression in GFAPγR1Δ mice, supporting inhibitory effects of ET-1 on OPC maturation. CONCLUSION: Our data implicate that IFNγ signaling to astrocytes is essential to limit a detrimental positive feedback loop of TNF and ET-1 production, which increases OLG apoptosis and impairs OPC differentiation. Interference of this cycle by TNF blockade promotes repair independent of TNFR2 and supports selective TNF targeting to mitigate progressive forms of MS.

Funding information:
  • Biotechnology and Biological Sciences Research Council - 233376(United Kingdom)
  • Cancer Center Support - P30CA014089()
  • National Multiple Sclerosis Society - RG4007B5()

Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma.

  • Merk DJ
  • Dev. Cell
  • 2018 Mar 26

Literature context: o Cat# Z0334, RRID:AB_10013382 Rabbit polyclonal anti S100 Dak


Abstract:

Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.

Funding information:
  • NIGMS NIH HHS - GM068388(United States)

Unveiling the Role of Ecto-5'-Nucleotidase/CD73 in Astrocyte Migration by Using Pharmacological Tools.

  • Adzic M
  • Front Pharmacol
  • 2018 Mar 17

Literature context: , Z0334 RRID:AB_10013382 Ki67 Rabbit, pc 1:500, IF Abcam


Abstract:

CD73 is a bifunctional glycosylphosphatidylinositol (GPI)-anchored membrane protein which functions as ecto-5'-nucleotidase and a membrane receptor for extracellular matrix protein (ECM). A large body of evidence demonstrates a critical involvement of altered purine metabolism and particularly, increased expression of CD73 in a number of human disorders, including cancer and immunodeficiency. Massive up-regulation of CD73 was also found in reactive astrocytes in several experimental models of human neuropathologies. In all the pathological contexts studied so far, the increased expression of CD73 has been associated with the altered ability of cells to adhere and/or migrate. Thus, we hypothesized that increased expression of CD73 in reactive astrocytes has a role in the process of astrocyte adhesion and migration. In the present study, the involvement of CD73 in astrocyte migration was investigated in the scratch wound assay (SW), using primary astrocyte culture prepared from neonatal rat cortex. The cultures were treated with one of the following pharmacological inhibitors which preferentially target individual functions of CD73: (a) α,β-methylene ADP (APCP), which inhibits the catalytic activity of CD73 (b) polyclonal anti-CD73 antibodies, which bind to the internal epitope of CD73 molecule and mask their surface exposure and (c) small interfering CD73-RNA (siCD73), which silences the expression of CD73 gene. It was concluded that approaches that reduce surface expression of CD73 increase migration velocity and promote wound closure in the scratch wound assay, while inhibition of the enzyme activity by APCP induces redistribution of CD73 molecules at the cell surface, thus indirectly affecting cell adhesion and migration. Application of anti-CD73 antibodies induces a decrease in CD73 activity and membrane expression, through CD73 molecules shedding and their release to the culture media. In addition, all applied pharmacological inhibitors differentially affect other aspects of astrocyte function in vitro, including reduced cell proliferation, altered expression of adenosine receptors and increased expression of ERK1/2. Altogether these data imply that CD73 participates in cell adhesion/migration and transmits extracellular signals through interactions with ECM.

Funding information:
  • Howard Hughes Medical Institute - CA11867(United States)

Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Müller Glial Reactivity.

  • Koh S
  • J. Neurosci.
  • 2018 Mar 21

Literature context: bbit anti-GFAP [RRID:AB_10013382, Z033429-2, Dako] were diluted


Abstract:

Human umbilical tissue-derived cells (hUTC or palucorcel) are currently under clinical investigation for the treatment of geographic atrophy, a late stage of macular degeneration, but how hUTC transplantation mediates vision recovery is not fully elucidated. Subretinal administration of hUTC preserves visual function in the Royal College of Surgeons (RCS) rat, a genetic model of retinal degeneration caused by Mertk loss of function. hUTC secrete synaptogenic and neurotrophic factors that improve the health and connectivity of the neural retina. Therefore, we investigated the progression of synapse and photoreceptor loss and whether hUTC treatment preserves photoreceptors and synaptic connectivity in the RCS rats of both sexes. We found that RCS retinas display significant deficits in synaptic development already by postnatal day 21 (P21), before the onset of photoreceptor degeneration. Subretinal transplantation of hUTC at P21 is necessary to rescue visual function in RCS rats, and the therapeutic effect is enhanced with repeated injections. Synaptic development defects occurred concurrently with morphological changes in Müller glia, the major perisynaptic glia in the retina. hUTC transplantation strongly diminished Müller glia reactivity and specifically protected the α2δ-1-containing retinal synapses, which are responsive to thrombospondin family synaptogenic proteins secreted by Müller glia. Müller glial reactivity and reduced synaptogenesis observed in RCS retinas could be recapitulated by CRISPR/Cas9-mediated loss-of-Mertk in Müller glia in wild-type rats. Together, our results show that hUTC transplantation supports the health of retina at least in part by preserving the functions of Müller glial cells, revealing a previously unknown aspect of hUTC transplantation-based therapy.SIGNIFICANCE STATEMENT Despite the promising effects observed in clinical trials and preclinical studies, how subretinal human umbilical tissue-derived cell (hUTC) transplantation mediates vision improvements is not fully known. Using a rat model of retinal degeneration, the RCS rat (lacking Mertk), here we provide evidence that hUTC transplantation protects visual function and health by protecting photoreceptors and preserving retinal synaptic connectivity. Furthermore, we find that loss of Mertk function only in Müller glia is sufficient to impair synaptic development and cause activation of Müller glia. hUTC transplantation strongly attenuates the reactivity of Müller glia in RCS rats. These findings highlight novel cellular and molecular mechanisms within the neural retina, which underlie disease mechanisms and pinpoint Müller glia as a novel cellular target for hUTC transplantation.

Funding information:
  • NCI NIH HHS - P30 CA016058(United States)

Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis.

  • Giannakopoulou A
  • J. Neurosci. Res.
  • 2018 Mar 12

Literature context: t# Z0334, RRID:AB_10013382), calretin


Abstract:

Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of chronic inflammation remains controversial. In this study the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis was used to investigate the long-term effects of T cell-mediated central nervous system inflammation on hippocampal neurogenesis. 5-Bromodeoxyuridine (BrdU)-labeled subpopulations of hippocampal cells in EAE and control mice (coexpressing GFAP, doublecortin, NeuN, calretinin, and S100) were quantified at the recovery phase, 21 days after BrdU administration, to estimate alterations on the rate and differentiation pattern of the neurogenesis process. The core features of EAE mice DG are (i) elevated number of newborn (BrdU+) cells indicating vigorous proliferation, which in the long term subsided; (ii) enhanced migration of newborn cells into the granule cell layer; (iii) increased level of immature neuronal markers (including calretinin and doublecortin); (iv) trending decrease in the percentage of newborn mature neurons; and (v) augmented gliogenesis and differentiation of newborn neural precursor cells (NPCs) to mature astrocytes (BrdU+/S100+). Although the inflammatory environment in the brain of EAE mice enhances the proliferation of hippocampal NPCs, in the long term neurogenesis is progressively depleted, giving prominence to gliogenesis. The discrepancy between the high number of immature cells and the low number of mature newborn cells could be the result of a caused defect in the maturation pathway. © 2016 Wiley Periodicals, Inc.

Mechanism and consequence of abnormal calcium homeostasis in Rett syndrome astrocytes.

  • Dong Q
  • Elife
  • 2018 Mar 29

Literature context: B_94844, 1:500; and Dako, Z0334 RRID:AB_10013382, 1:500), anti-MeCP2 (Abcam ab50


Abstract:

Astrocytes play an important role in Rett syndrome (RTT) disease progression. Although the non-cell-autonomous effect of RTT astrocytes on neurons was documented, cell-autonomous phenotypes and mechanisms within RTT astrocytes are not well understood. We report that spontaneous calcium activity is abnormal in RTT astrocytes in vitro, in situ, and in vivo. Such abnormal calcium activity is mediated by calcium overload in the endoplasmic reticulum caused by abnormal store operated calcium entry, which is in part dependent on elevated expression of TRPC4. Furthermore, the abnormal calcium activity leads to excessive activation of extrasynaptic NMDA receptors (eNMDARs) on neighboring neurons and increased network excitability in Mecp2 knockout mice. Finally, both the abnormal astrocytic calcium activity and the excessive activation of eNMDARs are caused by Mecp2 deletion in astrocytes in vivo. Our findings provide evidence that abnormal calcium homeostasis is a key cell-autonomous phenotype in RTT astrocytes, and reveal its mechanism and consequence.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BB/D017319(United Kingdom)
  • Eunice Kennedy Shriver National Institute of Child Health and Human Development - R01HD064743()
  • Eunice Kennedy Shriver National Institute of Child Health and Human Development - U54HD090256()
  • National Institute of Mental Health - ZIAMH002897()
  • National Institute of Neurological Disorders and Stroke - R21NS081484()
  • National Institute of Neurological Disorders and Stroke - R56NS100024()

Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility.

  • Larson VA
  • Elife
  • 2018 Mar 29

Literature context: it polyclonal) Dako Cat# Z0334; RRID:AB_10013382 (1:500)


Abstract:

The inwardly rectifying K+ channel Kir4.1 is broadly expressed by CNS glia and deficits in Kir4.1 lead to seizures and myelin vacuolization. However, the role of oligodendrocyte Kir4.1 channels in controlling myelination and K+ clearance in white matter has not been defined. Here, we show that selective deletion of Kir4.1 from oligodendrocyte progenitors (OPCs) or mature oligodendrocytes did not impair their development or disrupt the structure of myelin. However, mice lacking oligodendrocyte Kir4.1 channels exhibited profound functional impairments, including slower clearance of extracellular K+ and delayed recovery of axons from repetitive stimulation in white matter, as well as spontaneous seizures, a lower seizure threshold, and activity-dependent motor deficits. These results indicate that Kir4.1 channels in oligodendrocytes play an important role in extracellular K+ homeostasis in white matter, and that selective loss of this channel from oligodendrocytes is sufficient to impair K+ clearance and promote seizures.

Funding information:
  • National Institutes of Health - NS050274()
  • National Institutes of Health - NS051509()
  • National Institutes of Health - NS080153()
  • NCATS NIH HHS - UL1 TR000457(United States)

Loss of cone function without degeneration in a novel Gnat2 knock-out mouse.

  • Ronning KE
  • Exp. Eye Res.
  • 2018 Mar 9

Literature context: GFAP Rabbit Z0334 Dako RRID:AB_10013382 1:1000


Abstract:

Rods and cones mediate visual perception over 9 log units of light intensities, with both photoreceptor types contributing to a middle 3-log unit range that comprises most night-time conditions. Rod function in this mesopic range has been difficult to isolate and study in vivo because of the paucity of mutants that abolish cone signaling without causing photoreceptor degeneration. Here we describe a novel Gnat2 knockout mouse line (Gnat2-/-) ideal for dissecting rod and cone function. In this line, loss of Gnat2 expression abolished cone phototransduction, yet there was no loss of cones, disruption of the photoreceptor mosaic, nor change in general retinal morphology up to at least 9 months of age. Retinal microglia and Müller glia, which are highly sensitive to neuronal pathophysiology, were distributed normally with morphologies indistinguishable between Gnat2-/- and wildtype adult mice. ERG recordings demonstrated complete loss of cone-driven a-waves in Gnat2-/- mice; comparison to WT controls revealed that rods of both strains continue to function at light intensities exceeding 104 photoisomerizations rod-1 s-1. We conclude that the Gnat2-/- mouse is a preferred model for functional studies of rod pathways in the retina when degeneration could be an experimental confound.

Funding information:
  • Intramural NIH HHS - ZIA AR041159-04(United States)
  • NEI NIH HHS - R01 EY014047()

Olig2-Lineage Astrocytes: A Distinct Subtype of Astrocytes That Differs from GFAP Astrocytes.

  • Tatsumi K
  • Front Neuroanat
  • 2018 Mar 3

Literature context: onFOR IMMUNOFLUORESCENT STAININGRabbit anti-GFAPDakoZ03341:2,000Mouse anti-GFAPEMD millip


Abstract:

Astrocytes are the most abundant glia cell type in the central nervous system (CNS), and are known to constitute heterogeneous populations that differ in their morphology, gene expression and function. Although glial fibrillary acidic protein (GFAP) is the cardinal cytological marker of CNS astrocytes, GFAP-negative astrocytes can easily be found in the adult CNS. Astrocytes are also allocated to spatially distinct regional domains during development. This regional heterogeneity suggests that they help to coordinate post-natal neural circuit formation and thereby to regulate eventual neuronal activity. Here, during lineage-tracing studies of cells expressing Olig2 using Olig2CreER; Rosa-CAG-LSL-eNpHR3.0-EYFP transgenic mice, we found Olig2-lineage mature astrocytes in the adult forebrain. Long-term administration of tamoxifen resulted in sufficient recombinant induction, and Olig2-lineage cells were found to be preferentially clustered in some adult brain nuclei. We then made distribution map of Olig2-lineage astrocytes in the adult mouse brain, and further compared the map with the distribution of GFAP-positive astrocytes visualized in GFAPCre; Rosa-CAG-LSL-eNpHR3.0-EYFP mice. Brain regions rich in Olig2-lineage astrocytes (e.g., basal forebrain, thalamic nuclei, and deep cerebellar nuclei) tended to lack GFAP-positive astrocytes, and vice versa. Even within a single brain nucleus, Olig2-lineage astrocytes and GFAP astrocytes frequently occupied mutually exclusive territories. These findings strongly suggest that there is a subpopulation of astrocytes (Olig2-lineage astrocytes) in the adult brain, and that it differs from GFAP-positive astrocytes in its distribution pattern and perhaps also in its function. Interestingly, the brain nuclei rich in Olig2-lineage astrocytes strongly expressed GABA-transporter 3 in astrocytes and vesicular GABA transporter in neurons, suggesting that Olig2-lineage astrocytes are involved in inhibitory neuronal transmission.

Funding information:
  • NIGMS NIH HHS - P20 GM104416(United States)

Redirection of neuroblast migration from the rostral migratory stream into a lesion in the prefrontal cortex of adult rats.

  • Gundelach J
  • Exp Brain Res
  • 2018 Feb 23

Literature context: laced by Dako Rabbit anti-GFAP (RRID:AB_10013382) at the same concentration.


Abstract:

Clinical treatment of structural brain damage today is largely limited to symptomatic approaches and the avoidance of secondary injury. However, neuronal precursor cells are constantly produced within specified regions of the mammalian brain throughout life. Here we evaluate the potential of the known chemoattractive properties of the glycoprotein laminin on neuroblasts to relocate the cells into damaged brain areas. Injection of a thin laminin tract, leading from the rostral migratory stream to an excitotoxic lesion within the medial prefrontal cortex of rats, enabled neuroblasts to migrate away from their physiological route towards the olfactory bulb into the lesion site. Once they reached the damaged tissue, they migrated further in a non-uniform orientation within the lesion. Furthermore, our data indicate that the process of diverted migration is still active 6 weeks after the treatment and that at least some of the neuroblasts are capable of maturing into adult neurons.

Funding information:
  • NIAID NIH HHS - AI053108(United States)

Role of Purinergic Receptor P2Y1 in Spatiotemporal Ca2+ Dynamics in Astrocytes.

  • Shigetomi E
  • J. Neurosci.
  • 2018 Feb 7

Literature context: bbit polyclonal antibody (Dako; RRID:AB_10013382) at 4°C overnight. They were in


Abstract:

Fine processes of astrocytes enwrap synapses and are well positioned to sense neuronal information via synaptic transmission. In rodents, astrocyte processes sense synaptic transmission via Gq-protein coupled receptors (GqPCR), including the P2Y1 receptor (P2Y1R), to generate Ca2+ signals. Astrocytes display numerous spontaneous microdomain Ca2+ signals; however, it is not clear whether such signals are due to local synaptic transmission and/or in what timeframe astrocytes sense local synaptic transmission. To ask whether GqPCRs mediate microdomain Ca2+ signals, we engineered mice (both sexes) to specifically overexpress P2Y1Rs in astrocytes, and we visualized Ca2+ signals via a genetically encoded Ca2+ indicator, GCaMP6f, in astrocytes from adult mice. Astrocytes overexpressing P2Y1Rs showed significantly larger Ca2+ signals in response to exogenously applied ligand and to repetitive electrical stimulation of axons compared with controls. However, we found no evidence of increased microdomain Ca2+ signals. Instead, Ca2+ waves appeared and propagated to occupy areas that were up to 80-fold larger than microdomain Ca2+ signals. These Ca2+ waves accounted for only 2% of total Ca2+ events, but they were 1.9-fold larger and 2.9-fold longer in duration than microdomain Ca2+ signals at processes. Ca2+ waves did not require action potentials for their generation and occurred in a probenecid-sensitive manner, indicating that the endogenous ligand for P2Y1R is elevated independently of synaptic transmission. Our data suggest that spontaneous microdomain Ca2+ signals occur independently of P2Y1R activation and that astrocytes may not encode neuronal information in response to synaptic transmission at a point source of neurotransmitter release.SIGNIFICANCE STATEMENT Astrocytes are thought to enwrap synapses with their processes to receive neuronal information via Gq-protein coupled receptors (GqPCRs). Astrocyte processes display numerous microdomain Ca2+ signals that occur spontaneously. To determine whether GqPCRs play a role in microdomain Ca2+ signals and the timeframe in which astrocytes sense neuronal information, we engineered mice whose astrocytes specifically overexpress the P2Y1 receptor, a major GqPCR in astrocytes. We found that overexpression of P2Y1 receptors in astrocytes did not increase microdomain Ca2+ signals in astrocyte processes but caused Ca2+ wavelike signals. Our data indicate that spontaneous microdomain Ca2+ signals do not require activation of P2Y1 receptors.

Funding information:
  • Intramural NIH HHS - Z99 AR999999(United States)

Embryonic Exposure to Dexamethasone Affects Nonneuronal Cells in the Adult Paraventricular Nucleus of the Hypothalamus.

  • Frahm KA
  • J Endocr Soc
  • 2018 Feb 1

Literature context: or GFAP (1:250, RRID:AB_10013382; Z0334, Dako) in 1% bovine seru


Abstract:

Neurons in the paraventricular nucleus of the hypothalamus (PVN) integrate peripheral signals and coordinate responses that maintain numerous homeostatic functions. An excess of glucocorticoids during fetal development results in long-lasting consequences tied to disrupted PVN development. The PVN contains a distinct neuronal population and a threefold greater vascular density than the surrounding brain regions that prepubertally is reduced in offspring exposed to excess glucocorticoids in utero. This study expands the examination of sex-specific nonneuronal PVN composition by examining astrocytes, astrocytic endfeet, and pericytes. Blood-brain barrier (BBB) competency and composition were examined along with depressive-like behavior and hypothalamic-pituitary-adrenal function in male and female mice. For PVN vasculature, female offspring of vehicle (veh)-treated mothers had significantly more astrocytes and pericytes than male offspring from the same litters. Female offspring from dexamethasone (dex)-treated mothers had significantly lower levels of astrocytes than female offspring from veh-treated mothers, whereas male offspring from dex-treated mothers had greater levels of pericytes compared with veh-treated male offspring. Using the tail-suspension test, male and female offspring from dex-treated mothers had significantly shorter latencies to immobility, indicating an increase in depression-like behavior, and showed greater plasma corticosterone after restraint stress, which was significantly greater in female offspring from dex-treated mothers even after recovery. Therefore, in addition to long-term sex differences in cellular components of the BBB in the PVN that were differentially regulated by fetal glucocorticoid exposure, there were behavioral differences observed into early adulthood in a sex-specific manner.

Funding information:
  • NEI NIH HHS - R01 EY017381(United States)
  • NIDDK NIH HHS - R01 DK105826()

Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability.

  • Dawes JM
  • Neuron
  • 2018 Feb 21

Literature context: 4, RRID:AB_10013382 Chicken anti-GFP Abcam Cat# ab1


Abstract:

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.

Funding information:
  • NINDS NIH HHS - NS18400(United States)

Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand.

  • McWilliams TG
  • Cell Metab.
  • 2018 Feb 6

Literature context: rotein (GFAP) DAKO Cat#: Z0334; RRID:AB_10013382 Rabbit polyclonal anti-Tyrosine


Abstract:

Dysregulated mitophagy has been linked to Parkinson's disease (PD) due to the role of PTEN-induced kinase 1 (PINK1) in mediating depolarization-induced mitophagy in vitro. Elegant mouse reporters have revealed the pervasive nature of basal mitophagy in vivo, yet the role of PINK1 and tissue metabolic context remains unknown. Using mito-QC, we investigated the contribution of PINK1 to mitophagy in metabolically active tissues. We observed a high degree of mitophagy in neural cells, including PD-relevant mesencephalic dopaminergic neurons and microglia. In all tissues apart from pancreatic islets, loss of Pink1 did not influence basal mitophagy, despite disrupting depolarization-induced Parkin activation. Our findings provide the first in vivo evidence that PINK1 is detectable at basal levels and that basal mammalian mitophagy occurs independently of PINK1. This suggests multiple, yet-to-be-discovered pathways orchestrating mammalian mitochondrial integrity in a context-dependent fashion, and this has profound implications for our molecular understanding of vertebrate mitophagy.

Funding information:
  • NHLBI NIH HHS - R01 HL074894(United States)

Vitamin transporters in mice brain with aging.

  • Marcos P
  • J. Anat.
  • 2018 Jan 10

Literature context: porters (SVCT2 and αTTP), GFAP (RRID:AB_10013382) or NeuN (RRID: AB_2651140) (si


Abstract:

Its high metabolic rate and high polyunsaturated fatty acid content make the brain very sensitive to oxidative damage. In the brain, neuronal metabolism occurs at a very high rate and generates considerable amounts of reactive oxygen species and free radicals, which accumulate inside neurons, leading to altered cellular homeostasis and integrity and eventually irreversible damage and cell death. A misbalance in redox metabolism and the subsequent neurodegeneration increase throughout the course of normal aging, leading to several age-related changes in learning and memory as well as motor functions. The neuroprotective function of antioxidants is crucial to maintain good brain homeostasis and adequate neuronal functions. Vitamins E and C are two important antioxidants that are taken up by brain cells via the specific carriers αTTP and SVCT2, respectively. The aim of this study was to use immunohistochemistry to determine the distribution pattern of these vitamin transporters in the brain in a mouse model that shows fewer signs of brain aging and a higher resistance to oxidative damage. Both carriers were distributed widely throughout the entire brain in a pattern that remained similar in 4-, 12-, 18- and 24-month-old mice. In general, αTTP and SVCT2 were located in the same regions, but they seemed to have complementary distribution patterns. Double-labeled cell bodies were detected only in the inferior colliculus, entorhinal cortex, dorsal subiculum, and several cortical areas. In addition, the presence of αTTP and SVCT2 in neurons was analyzed using double immunohistochemistry for NeuN and the results showed that αTTP but not SVCT2 was present in Bergmann's glia. The presence of these transporters in brain regions implicated in learning, memory and motor control provides an anatomical basis that may explain the higher resistance of this animal model to brain oxidative stress, which is associated with better motor performance and learning abilities in old age.

Funding information:
  • NINDS NIH HHS - R01 NS050699(United States)

Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord.

  • Fogarty LC
  • Mol. Cell. Neurosci.
  • 2018 Jan 12

Literature context: t# Z0334, RRID:AB_10013382), Ki67 (Ab


Abstract:

The bcl-2 family of survival and death promoting proteins play a key role in regulating cell numbers during nervous system development. Bcl-xL, an anti-apoptotic bcl-2 family member is highly expressed in the developing nervous system. However; the early embryonic lethality of the bcl-x germline null mouse precluded an investigation into its role in nervous system development. To identify the role of bcl-x in spinal cord neurogenesis, we generated a central nervous system-specific bcl-x conditional knockout (BKO) mouse. Apoptotic cell death in the BKO embryo was initially detected at embryonic day 11 (E11) in the ventrolateral aspect of the spinal cord corresponding to the location of motor neurons. Apoptosis reached its peak at E13 having spread across the ventral and into the dorsal spinal cord. By E18, the wave of apoptosis had passed and only a few apoptotic cells were observed. The duration and direction of spread of apoptosis across the spinal cord is consistent with the spatial and temporal sequence of neuronal differentiation. Motor neurons, the first neurons to become post mitotic in the spinal cord, were also the first apoptotic cells. As neurogenesis spread across the spinal cord, later born neuronal populations such as Lim2+ interneurons were also affected. The onset of apoptosis occurred in cells that had exited the cell cycle within the previous 24h and initiated neural differentiation as demonstrated by BrdU birthdating and βIII tubulin immunohistochemistry. This data demonstrates that spinal cord neurons become Bcl-xL dependent at an early post mitotic stage in developmental neurogenesis.

Funding information:
  • NIAID NIH HHS - R01 AI074847(United States)

Microglial TNFα Induces COX2 and PGI2 Synthase Expression in Spinal Endothelial Cells during Neuropathic Pain.

  • Kanda H
  • eNeuro
  • 2018 Jan 29

Literature context: 00, Dako, RRID:AB_10013382), mouse an


Abstract:

Prostaglandins (PGs) are typical lipid mediators that play a role in homeostasis and disease. They are synthesized from arachidonic acid by cyclooxygenase 1 (COX1) and COX2. Although COX2 has been reported to be upregulated in the spinal cord after nerve injury, its expression and functional roles in neuropathic pain remain unclear. In this study, we investigated the expression of Cox2, PGI2 synthase (Pgis), and prostaglandin I2 receptor (IP receptor) mRNA in the rat spinal cord after spared nerve injury (SNI). Levels of Cox2 and Pgis mRNA increased in endothelial cells from 24 to 48 h after nerve injury. IP receptor mRNA was constitutively expressed in dorsal horn neurons. A COX2 inhibitor and IP receptor antagonists attenuated pain behavior in the early phase of neuropathic pain. Furthermore, we examined the relationship between COX2 and tumor necrosis factor-α (TNFα) in the spinal cord of a rat SNI model. Levels of TNFα mRNA transiently increased in the spinal microglia 24 h after SNI. The TNF receptors Tnfr1 and Tnfr2 mRNA were colocalized with COX2. Intrathecal injection of TNFα induced Cox2 and Pgis mRNA expression in endothelial cells. These results revealed that microglia-derived TNFα induced COX2 and PGIS expression in spinal endothelial cells and that endothelial PGI2 played a critical role in neuropathic pain via neuronal IP receptor. These findings further suggest that the glia-endothelial cell interaction of the neurovascular unit via transient TNFα is involved in the generation of neuropathic pain.

Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes.

  • Mariotti L
  • Nat Commun
  • 2018 Jan 8

Literature context: ibrillary acidic protein (GFAP, RRID:AB_10013382, 1:300 rabbit, Dako, Denmark, Z


Abstract:

The signaling diversity of GABAergic interneurons to post-synaptic neurons is crucial to generate the functional heterogeneity that characterizes brain circuits. Whether this diversity applies to other brain cells, such as the glial cells astrocytes, remains unexplored. Using optogenetics and two-photon functional imaging in the adult mouse neocortex, we here reveal that parvalbumin- and somatostatin-expressing interneurons, two key interneuron classes in the brain, differentially signal to astrocytes inducing weak and robust GABAB receptor-mediated Ca2+ elevations, respectively. Furthermore, the astrocyte response depresses upon parvalbumin interneuron repetitive stimulations and potentiates upon somatostatin interneuron repetitive stimulations, revealing a distinguished astrocyte plasticity. Remarkably, the potentiated response crucially depends on the neuropeptide somatostatin, released by somatostatin interneurons, which activates somatostatin receptors at astrocytic processes. Our study unveils, in the living brain, a hitherto unidentified signaling specificity between interneuron subtypes and astrocytes opening a new perspective into the role of astrocytes as non-neuronal components of inhibitory circuits.

Funding information:
  • NCI NIH HHS - R01 CA137102(United States)

Non-Newly Generated, "Immature" Neurons in the Sheep Brain Are Not Restricted to Cerebral Cortex.

  • Piumatti M
  • J. Neurosci.
  • 2018 Jan 24

Literature context: GFAP Rabbit 1:800 RRID:AB_10013382 Agilent Technologies


Abstract:

A newly proposed form of brain structural plasticity consists of non-newly generated, "immature" neurons of the adult cerebral cortex. Similar to newly generated neurons, these cells express the cytoskeletal protein Doublecortin (DCX), yet they are generated prenatally and then remain in a state of immaturity for long periods. In rodents, the immature neurons are restricted to the paleocortex, whereas in other mammals, they are also found in neocortex. Here, we analyzed the DCX-expressing cells in the whole sheep brain of both sexes to search for an indicator of structural plasticity at a cellular level in a relatively large-brained, long-living mammal. Brains from adult and newborn sheep (injected with BrdU and analyzed at different survival times) were processed for DCX, cell proliferation markers (Ki-67, BrdU), pallial/subpallial developmental origin (Tbr1, Sp8), and neuronal/glial antigens for phenotype characterization. We found immature-like neurons in the whole sheep cortex and in large populations of DCX-expressing cells within the external capsule and the surrounding gray matter (claustrum and amygdala). BrdU and Ki-67 detection at neonatal and adult ages showed that all of these DCX+ cells were generated during embryogenesis, not after birth. These results show that the adult sheep, unlike rodents, is largely endowed with non-newly generated neurons retaining immature features, suggesting that such plasticity might be particularly important in large-brained, long-living mammals.SIGNIFICANCE STATEMENT Brain plasticity is important in adaptation and brain repair. Structural changes span from synaptic plasticity to adult neurogenesis, the latter being highly reduced in large-brained, long-living mammals (e.g., humans). The cerebral cortex contains "immature" neurons, which are generated prenatally and then remain in an undifferentiated state for long periods, being detectable with markers of immaturity. We studied the distribution and developmental origin of these cells in the whole brain of sheep, relatively large-brained, long-living mammals. In addition to the expected cortical location, we also found populations of non-newly generated neurons in several subcortical regions (external capsule, claustrum, and amygdala). These results suggests that non-neurogenic, parenchymal structural plasticity might be more important in large mammals with respect to adult neurogenesis.

Funding information:
  • Howard Hughes Medical Institute - N01-AI-40096(United States)

Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination.

  • Sanchez MA
  • Exp. Neurol.
  • 2017 Dec 20

Literature context: RRID: (AB_10013382) goat anti-rabbit (H + L) IgG (


Abstract:

Sonic hedgehog (Shh) regulates a wave of oligodendrocyte production for extensive myelination during postnatal development. During this postnatal period of oligodendrogenesis, we fate-labeled cells exhibiting active Shh signaling to examine their contribution to the regenerative response during remyelination. Bitransgenic mouse lines were generated for induced genetic fate-labeling of cells actively transcribing Shh or Gli1. Gli1 transcription is an effective readout for canonical Shh signaling. ShhCreERT2 mice and Gli1CreERT2 mice were crossed to either R26tdTomato mice to label cells with red fluorescence, or, R26IAP mice to label membranes with alkaline phosphatase. When tamoxifen (TMX) was given on postnatal days 6-9 (P6-9), Shh ligand synthesis was prevalent in neurons of ShhCreERT2; R26tdTomato mice and ShhCreERT2;R26IAP mice. In Gli1CreERT2 crosses, TMX from P6-9 detected Gli1 transcription in cells that populated the corpus callosum (CC) during postnatal myelination. Delaying TMX to P14-17, after the peak of oligodendrogenesis, significantly reduced labeling of Shh synthesizing neurons and Gli1 expressing cells in the CC. Importantly, Gli1CreERT2;R26tdTomato mice given TMX from P6-9 showed Gli1 fate-labeled cells in the adult (P56) CC, including cycling progenitor cells identified by EdU incorporation and NG2 immunolabeling. Furthermore, after cuprizone demyelination of the adult CC, Gli1 fate-labeled cells incorporated EdU and were immunolabeled by NG2 early during remyelination while forming myelin-like membranes after longer periods for remyelination to progress. These studies reveal a postnatal cell population with transient Shh signaling that contributes to oligodendrogenesis during CC myelination, and gives rise to cells that continue to proliferate in adulthood and contribute to CC remyelination.

In Vitro Adult Astrocytes are Derived From Mature Cells and Reproduce in Vivo Redox Profile.

  • Souza DG
  • J. Cell. Biochem.
  • 2017 Dec 22

Literature context: at# Z0334 RRID:AB_10013382); Polyclon


Abstract:

Astrocytes are versatile cells involved in synaptic information processing, energy metabolism, redox homeostasis, inflammatory response, and structural support of the brain. Recently, we established a routine protocol of cultured astrocytes derived from adult and aged Wistar rats, which present several different responses compared to newborn astrocytes, commonly used to characterize the role of the astrocytes in the central nervous system. Previous studies hypothesized that astrocyte cultures prepared from adult animals derive from immature precursors present in the adult tissue throughout life. Since our group has already demonstrated that the glial functionality of adult astrocytes differs from newborn cultures, the aim of this study was to confirm that our in vitro astrocytes were derived from mature cells. Therefore, we evaluated cytoskeleton proteins, such as glial fibrillary acidic protein and vimentin, as well as Sox10, an essential marker of immature glial cells, in ex vivo tissue and in in vitro astrocytes from the same animals (1, 90, and 180 days old). In addition, we examined the mitochondrial functionality and the cellular redox homeostasis. Our results suggest that adult and aged astrocytes are derived from mature cells and that changes in mitochondrial parameters in ex vivo tissue were reproduced in in vitro astrocytes. J. Cell. Biochem. 118: 3111-3118, 2017. © 2017 Wiley Periodicals, Inc.

Transient Hypoxemia Chronically Disrupts Maturation of Preterm Fetal Ovine Subplate Neuron Arborization and Activity.

  • McClendon E
  • J. Neurosci.
  • 2017 Dec 6

Literature context: nst GFAP (Dako, catalog #Z0334, RRID:AB_10013382, 1:500) and a rabbit polyclonal


Abstract:

Preterm infants are at risk for a broad spectrum of neurobehavioral disabilities associated with diffuse disturbances in cortical growth and development. During brain development, subplate neurons (SPNs) are a largely transient population that serves a critical role to establish functional cortical circuits. By dynamically integrating into developing cortical circuits, they assist in consolidation of intracortical and extracortical circuits. Although SPNs reside in close proximity to cerebral white matter, which is particularly vulnerable to oxidative stress, the susceptibility of SPNs remains controversial. We determined SPN responses to two common insults to the preterm brain: hypoxia-ischemia and hypoxia. We used a preterm fetal sheep model using both sexes that reproduces the spectrum of human cerebral injury and abnormal cortical growth. Unlike oligodendrocyte progenitors, SPNs displayed pronounced resistance to early or delayed cell death from hypoxia or hypoxia-ischemia. We thus explored an alternative hypothesis that these insults alter the maturational trajectory of SPNs. We used DiOlistic labeling to visualize the dendrites of SPNs selectively labeled for complexin-3. SPNs displayed reduced basal dendritic arbor complexity that was accompanied by chronic disturbances in SPN excitability and synaptic activity. SPN dysmaturation was significantly associated with the level of fetal hypoxemia and metabolic stress. Hence, despite the resistance of SPNs to insults that trigger white matter injury, transient hypoxemia disrupted SPN arborization and functional maturation during a critical window in cortical development. Strategies directed at limiting the duration or severity of hypoxemia during brain development may mitigate disturbances in cerebral growth and maturation related to SPN dysmaturation.SIGNIFICANCE STATEMENT The human preterm brain commonly sustains blood flow and oxygenation disturbances that impair cerebral cortex growth and cause life-long cognitive and learning disabilities. We investigated the fate of subplate neurons (SPNs), which are a master regulator of brain development that plays critical roles in establishing cortical connections to other brain regions. We used a preterm fetal sheep model that reproduces key features of brain injury in human preterm survivors. We analyzed the responses of fetal SPNs to transient disturbances in fetal oxygenation. We discovered that SPNs are surprisingly resistant to cell death from low oxygen states but acquire chronic structural and functional changes that suggest new strategies to prevent learning problems in children and adults that survive preterm birth.

Extracellular ATP induces graded reactive response of astrocytes and strengthens their antioxidative defense in vitro.

  • Adzic M
  • J. Neurosci. Res.
  • 2017 Nov 16

Literature context: l, Z0334, RRID:AB_10013382


Abstract:

It is widely accepted that adenosine triphosphate (ATP) acts as a universal danger-associated molecular pattern with several known mechanisms for immune cell activation. In the central nervous system, ATP activates microglia and astrocytes and induces a neuroinflammatory response. The aim of the present study was to describe responses of isolated astrocytes to increasing concentrations of ATP (5 µM to 1 mM), which were intended to mimic graded intensity of the extracellular stimulus. The results show that ATP induces graded activation response of astrocytes in terms of the cell proliferation, stellation, shape remodeling, and underlying actin and GFAP filament rearrangement, although the changes occurred without an apparent increase in GFAP and actin protein expression. On the other hand, ATP in the range of applied concentrations did not evoke IL-1β release from cultured astrocytes, nor did it modify the release from LPS and LPS+IFN-γ-primed astrocytes. ATP did not promote astrocyte migration in the wound-healing assay, nor did it increase production of reactive oxygen and nitrogen species and lipid peroxidation. Instead, ATP strengthened the antioxidative defense of astrocytes by inducing Cu/ZnSOD and MnSOD activities and by increasing their glutathione content. Our current results suggest that although ATP triggers several attributes of activated astrocytic phenotype with a magnitude that increases with the concentration, it is not sufficient to induce full-blown reactive phenotype of astrocytes in vitro. © 2016 Wiley Periodicals, Inc.

Development and Refinement of Functional Properties of Adult-Born Neurons.

  • Wallace JL
  • Neuron
  • 2017 Nov 15

Literature context: 0334, RRID:AB_10013382 Bacterial and Virus Strains


Abstract:

New neurons appear only in a few regions of the adult mammalian brain and become integrated into existing circuits. Little is known about the functional development of individual neurons in vivo. We examined the functional life history of adult-born granule cells (abGCs) in the olfactory bulb using multiphoton imaging in awake and anesthetized mice. We found that abGCs can become responsive to odorants soon after they arrive in the olfactory bulb. Tracking identified abGCs over weeks revealed that the robust and broadly tuned responses of most newly arrived abGCs gradually become more selective over a period of ∼3 weeks, but a small fraction achieves broader tuning with maturation. Enriching the olfactory environment of mice prolonged the period over which abGCs were strongly and broadly responsive to odorants. Our data offer direct support for rapid integration of adult-born neurons into existing circuits, followed by experience-dependent refinement of their functional connectivity.

Longitudinal investigation of neuroinflammation and metabolite profiles in the APPswe ×PS1Δe9 transgenic mouse model of Alzheimer's disease.

  • Chaney A
  • J. Neurochem.
  • 2017 Nov 11

Literature context: AP (DAKO (Z0334), RRID:AB_10013382, 1 : 1000); mouse anti-human 6E


Abstract:

There is increasing evidence linking neuroinflammation to many neurological disorders including Alzheimer's disease (AD); however, its exact contribution to disease manifestation and/or progression is poorly understood. Therefore, there is a need to investigate neuroinflammation in both health and disease. Here, we investigate cognitive decline, neuroinflammatory and other pathophysiological changes in the APPswe ×PS1Δe9 transgenic mouse model of AD. Transgenic (TG) mice were compared to C57BL/6 wild type (WT) mice at 6, 12 and 18 months of age. Neuroinflammation was investigated by [18 F]DPA-714 positron emission tomography and myo-inositol levels using 1 H magnetic resonance spectroscopy (MRS) in vivo. Neuronal and cellular dysfunction was investigated by looking at N-acetylaspartate (NAA), choline-containing compounds, taurine and glutamate also using MRS. Cognitive decline was first observed at 12 m of age in the TG mice as assessed by working memory tests . A significant increase in [18 F]DPA-714 uptake was seen in the hippocampus and cortex of 18 m-old TG mice when compared to age-matched WT mice and 6 m-old TG mice. No overall effect of gene was seen on metabolite levels; however, a significant reduction in NAA was observed in 18 m-old TG mice when compared to WT. In addition, age resulted in a decrease in glutamate and an increase in choline levels. Therefore, we can conclude that increased neuroinflammation and cognitive decline are observed in TG animals, whereas NAA alterations occurring with age are exacerbated in the TG mice. These results support the role of neuroinflammation and metabolite alteration in AD and in ageing.

Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy.

  • Cuadrado A
  • Redox Biol
  • 2017 Nov 10

Literature context: erck-MilliporeCB10011:15.000GFAPDakoCytomationZ03341:500 (IHC)p-Ser9-GSK-3βCell Sig


Abstract:

Tauopathies are a group of neurodegenerative disorders where TAU protein is presented as aggregates or is abnormally phosphorylated, leading to alterations of axonal transport, neuronal death and neuroinflammation. Currently, there is no treatment to slow progression of these diseases. Here, we have investigated whether dimethyl fumarate (DMF), an inducer of the transcription factor NRF2, could mitigate tauopathy in a mouse model. The signaling pathways modulated by DMF were also studied in mouse embryonic fibroblast (MEFs) from wild type or KEAP1-deficient mice. The effect of DMF on neurodegeneration, astrocyte and microglial activation was examined in Nrf2+/+ and Nrf2-/- mice stereotaxically injected in the right hippocampus with an adeno-associated vector expressing human TAUP301L and treated daily with DMF (100mg/kg, i.g) during three weeks. DMF induces the NRF2 transcriptional through a mechanism that involves KEAP1 but also PI3K/AKT/GSK-3-dependent pathways. DMF modulates GSK-3β activity in mouse hippocampi. Furthermore, DMF modulates TAU phosphorylation, neuronal impairment measured by calbindin-D28K and BDNF expression, and inflammatory processes involved in astrogliosis, microgliosis and pro-inflammatory cytokines production. This study reveals neuroprotective effects of DMF beyond disruption of the KEAP1/NRF2 axis by inhibiting GSK3 in a mouse model of tauopathy. Our results support repurposing of this drug for treatment of these diseases.

Funding information:
  • NCRR NIH HHS - P20 RR16462(United States)

Astrocyte-produced leukemia inhibitory factor expands the neural stem/progenitor pool following perinatal hypoxia-ischemia.

  • Felling RJ
  • J. Neurosci. Res.
  • 2017 Nov 20

Literature context: at #Z0334 RRID:AB_10013382 Rabbit pol


Abstract:

Brain injuries, such as cerebral hypoxia-ischemia (H-I), induce a regenerative response from the neural stem/progenitors (NSPs) of the subventricular zone (SVZ); however, the mechanisms that regulate this expansion have not yet been fully elucidated. The Notch- Delta-Serrate-Lag2 (DSL) signaling pathway is considered essential for the maintenance of neural stem cells, but it is not known if it is necessary for the expansion of the NSPs subsequent to perinatal H-I injury. Therefore, the aim of this study was to investigate whether this pathway contributes to NSP expansion in the SVZ after H-I and, if so, to establish whether this pathway is directly induced by H-I or regulated by paracrine factors. Here we report that Notch1 receptor induction and one of its ligands, Delta-like 1, precedes NSP expansion after perinatal H-I in P6 rat pups and that this increase occurs specifically in the most medial cell layers of the SVZ where the stem cells reside. Pharmacologically inhibiting Notch signaling in vivo diminished NSP expansion. With an in vitro model of H-I, Notch1 was not induced directly by hypoxia, but was stimulated by soluble factors, specifically leukemia inhibitory factor, produced by astrocytes within the SVZ. These data confirm the importance both of the Notch-DSL signaling pathway in the expansion of NSPs after H-I and in the role of the support cells in their niche. They further support the body of evidence that indicates that leukemia inhibitory factor is a key injury-induced cytokine that is stimulating the regenerative response of the NSPs. © 2016 Wiley Periodicals, Inc.

Neutrophils Are Critical for Myelin Removal in a Peripheral Nerve Injury Model of Wallerian Degeneration.

  • Lindborg JA
  • J. Neurosci.
  • 2017 Oct 25

Literature context: P (1:400; Dako, catalog #Z0334, RRID:AB_10013382), S100 (1:200; AbD Serotec, cat


Abstract:

Wallerian degeneration (WD) is considered an essential preparatory stage to the process of axonal regeneration. In the peripheral nervous system, infiltrating monocyte-derived macrophages, which use the chemokine receptor CCR2 to gain entry to injured tissues from the bloodstream, are purportedly necessary for efficient WD. However, our laboratory has previously reported that myelin clearance in the injured sciatic nerve proceeds unhindered in the Ccr2-/- mouse model. Here, we extensively characterize WD in male Ccr2-/- mice and identify a compensatory mechanism of WD that is facilitated primarily by neutrophils. In response to the loss of CCR2, injured Ccr2-/- sciatic nerves demonstrate prolonged expression of neutrophil chemokines, a concomitant extended increase in the accumulation of neutrophils in the nerve, and elevated phagocytosis by neutrophils. Neutrophil depletion substantially inhibits myelin clearance after nerve injury in both male WT and Ccr2-/- mice, highlighting a novel role for these cells in peripheral nerve degeneration that spans genotypes.SIGNIFICANCE STATEMENT The accepted view in the basic and clinical neurosciences is that the clearance of axonal and myelin debris after a nerve injury is directed primarily by inflammatory CCR2+ macrophages. However, we demonstrate that this clearance is nearly identical in WT and Ccr2-/- mice, and that neutrophils replace CCR2+ macrophages as the primary phagocytic cell. We find that neutrophils play a major role in myelin clearance not only in Ccr2-/- mice but also in WT mice, highlighting their necessity during nerve degeneration in the peripheral nervous system. These degeneration studies may propel improvements in nerve regeneration and draw critical parallels to mechanisms of nerve degeneration and regeneration in the CNS and in the context of peripheral neuropathies.

Funding information:
  • NEI NIH HHS - P30 EY011373()
  • NIDDK NIH HHS - R01 DK097223()
  • NIDDK NIH HHS - R56 DK097223()
  • NIH HHS - S10 OD016164()
  • NINDS NIH HHS - F31 NS093694()
  • NINDS NIH HHS - R01 NS095017()
  • NINDS NIH HHS - T32 NS067431()

Vesicular Glutamate Transporter 1 Knockdown in Infralimbic Prefrontal Cortex Augments Neuroendocrine Responses to Chronic Stress in Male Rats.

  • Myers B
  • Endocrinology
  • 2017 Oct 1

Literature context: 34 Rabbit; polyclonal 1:2000 RRID:AB_10013382


Abstract:

Chronic stress-associated pathologies frequently associate with alterations in the structure and activity of the medial prefrontal cortex (mPFC). However, the influence of infralimbic cortex (IL) projection neurons on hypothalamic-pituitary-adrenal (HPA) axis activity is unknown, as is the involvement of these cells in chronic stress-induced endocrine alterations. In the current study, a lentiviral-packaged vector coding for a small interfering RNA (siRNA) targeting vesicular glutamate transporter (vGluT) 1 messenger RNA (mRNA) was microinjected into the IL of male rats. vGluT1 is responsible for presynaptic vesicular glutamate packaging in cortical neurons, and knockdown reduces the amount of glutamate available for synaptic release. After injection, rats were either exposed to chronic variable stress (CVS) or remained in the home cage as unstressed controls. Fifteen days after the initiation of CVS, all animals were exposed to a novel acute stressor (30-minute restraint) with blood collection for the analysis of adrenocorticotropic hormone (ACTH) and corticosterone. Additionally, brains were collected for in situ hybridization of corticotrophin-releasing hormone mRNA. In previously unstressed rats, vGluT1 siRNA significantly enhanced ACTH and corticosterone secretion. Compared with CVS animals receiving the green fluorescent protein control vector, the vGluT1 siRNA further increased basal and stress-induced corticosterone release. Further analysis revealed enhanced adrenal responsiveness in CVS rats treated with vGluT1 siRNA. Collectively, our results suggest that IL glutamate output inhibits HPA responses to acute stress and restrains corticosterone secretion during chronic stress, possibly at the level of the adrenal. Together, these findings pinpoint a neurochemical mechanism linking mPFC dysfunction with aberrant neuroendocrine responses to chronic stress.

Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity.

  • Quarta C
  • Cell Metab.
  • 2017 Oct 3

Literature context: O Cat. No. Z0334; RRID:AB_10013382 Biotinylated Goat anti-Rabbit I


Abstract:

Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases, but their pleiotropic nature leads to detrimental metabolic side effects. We developed a glucagon-like peptide-1 (GLP-1)-dexamethasone co-agonist in which GLP-1 selectively delivers dexamethasone to GLP-1 receptor-expressing cells. GLP-1-dexamethasone lowers body weight up to 25% in obese mice by targeting the hypothalamic control of feeding and by increasing energy expenditure. This strategy reverses hypothalamic and systemic inflammation while improving glucose tolerance and insulin sensitivity. The selective preference for GLP-1 receptor bypasses deleterious effects of dexamethasone on glucose handling, bone integrity, and hypothalamus-pituitary-adrenal axis activity. Thus, GLP-1-directed glucocorticoid pharmacology represents a safe and efficacious therapy option for diet-induced immunometabolic derangements and the resulting obesity.

Spinal nociceptive circuit analysis with recombinant adeno-associated viruses: the impact of serotypes and promoters.

  • Haenraets K
  • J. Neurochem.
  • 2017 Sep 12

Literature context: oCytomation RRID:AB_10013382 Chicken anti-GFP (1 : 1000) The


Abstract:

Recombinant adeno-associated virus (rAAV) vector-mediated gene transfer into genetically defined neuron subtypes has become a powerful tool to study the neuroanatomy of neuronal circuits in the brain and to unravel their functions. More recently, this methodology has also become popular for the analysis of spinal cord circuits. To date, a variety of naturally occurring AAV serotypes and genetically modified capsid variants are available but transduction efficiency in spinal neurons, target selectivity, and the ability for retrograde tracing are only incompletely characterized. Here, we have compared the transduction efficiency of seven commonly used AAV serotypes after intraspinal injection. We specifically analyzed local transduction of different types of dorsal horn neurons, and retrograde transduction of dorsal root ganglia (DRG) neurons and of neurons in the rostral ventromedial medulla (RVM) and the somatosensory cortex (S1). Our results show that most of the tested rAAV vectors have similar transduction efficiency in spinal neurons. All serotypes analyzed were also able to transduce DRG neurons and descending RVM and S1 neurons via their spinal axon terminals. When comparing the commonly used rAAV serotypes to the recently developed serotype 2 capsid variant rAAV2retro, a > 20-fold increase in transduction efficiency of descending supraspinal neurons was observed. Conversely, transgene expression in retrogradely transduced neurons was strongly reduced when the human synapsin 1 (hSyn1) promoter was used instead of the strong ubiquitous hybrid cytomegalovirus enhancer/chicken β-actin promoter (CAG) or cytomegalovirus (CMV) promoter fragments. We conclude that the use of AAV2retro greatly increases transduction of neurons connected to the spinal cord via their axon terminals, while the hSyn1 promoter can be used to minimize transgene expression in retrogradely connected neurons of the DRG or brainstem. Cover Image for this issue: doi. 10.1111/jnc.13813.

RING Finger Protein 38 Is a Neuronal Protein in the Brain of Nile Tilapia, Oreochromis niloticus.

  • Cham KL
  • Front Neuroanat
  • 2017 Sep 15

Literature context: i-GFAP antiserum (1:500, Z0334, RRID:AB_10013382, Dako, Glostrup, Denmark) inclu


Abstract:

Really interesting new gene (RING) finger protein is a type of zinc-binding motif found in a large family of functionally distinct proteins. RING finger proteins are involved in diverse cellular processes including apoptosis, DNA repair, cell cycle, signal transduction, tumour suppressor, vesicular transport, and peroxisomal biogenesis. RING finger protein 38 (RNF38) is a member of the family whose functions remain unknown. To gain insight into the putative effects of RNF38 in the central nervous system, we localised its expression. The aim of this study was to identify the neuroanatomical location(s) of rnf38 mRNA and its peptide, determine the type of RNF38-expressing cells, and measure rnf38 gene expression in the brain of male tilapia. The distributions of rnf38 mRNA and its peptide were visualised using in situ hybridisation with digoxigenin-labelled RNA antisense and immunocytochemistry, respectively. Both were identically distributed throughout the brain, including the telencephalon, preoptic area, optic tectum, hypothalamus, cerebellum, and the hindbrain. Double-labelling immunocytochemistry for RNF38 and the neuronal marker HuC/D showed that most but not all RNF38 protein was expressed in neuronal nuclei. Quantitative real-time polymerase chain reaction showed the highest level of rnf38 mRNA in the midbrain, followed by the preoptic area, cerebellum, optic tectum, telencephalon, hindbrain and hypothalamus. These findings reveal a differential spatial pattern of RNF38 in the tilapia brain, suggesting that it has potentially diverse functions related to neuronal activity.

NF-κB Activation Protects Oligodendrocytes against Inflammation.

  • Stone S
  • J. Neurosci.
  • 2017 Sep 20

Literature context: P; 1:200; Agilent Technologies, RRID:AB_10013382), and aspartoacylase (ASPA, 1:1


Abstract:

NF-κB is a key player in inflammatory diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the effects of NF-κB activation on oligodendrocytes in MS and EAE remain unknown. We generated a mouse model that expresses IκBαΔN, a super-suppressor of NF-κB, specifically in oligodendrocytes and demonstrated that IκBαΔN expression had no effect on oligodendrocytes under normal conditions (both sexes). Interestingly, we showed that oligodendrocyte-specific expression of IκBαΔN blocked NF-κB activation in oligodendrocytes and resulted in exacerbated oligodendrocyte death and hypomyelination in young, developing mice that express IFN-γ ectopically in the CNS (both sexes). We also showed that NF-κB inactivation in oligodendrocytes aggravated IFN-γ-induced remyelinating oligodendrocyte death and remyelination failure in the cuprizone model (male mice). Moreover, we found that NF-κB inactivation in oligodendrocytes increased the susceptibility of mice to EAE (female mice). These findings imply the cytoprotective effects of NF-κB activation on oligodendrocytes in MS and EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. NF-κB is a major player in inflammatory diseases that acts by regulating inflammation and cell viability. Data indicate that NF-κB activation in inflammatory cells facilitates the development of MS. However, to date, attempts to understand the role of NF-κB activation in oligodendrocytes in MS have been unsuccessful. Herein, we generated a mouse model that allows for inactivation of NF-κB specifically in oligodendrocytes and then used this model to determine the precise role of NF-κB activation in oligodendrocytes in models of MS. The results presented in this study represent the first demonstration that NF-κB activation acts cell autonomously to protect oligodendrocytes against inflammation in animal models of MS.

Funding information:
  • NINDS NIH HHS - R01 NS094151()

Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.

  • Assinck P
  • J. Neurosci.
  • 2017 Sep 6

Literature context: RRID:AB_10013382


Abstract:

Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation.

Funding information:
  • NIDDK NIH HHS - DK072473(United States)

Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9.

  • Murase S
  • Elife
  • 2017 Sep 6

Literature context: bbit anti-GFAP (DAKO) RRID:AB_10013382, 1:2000; rabbit anti-Iba-1 (Wak


Abstract:

The sensitivity of ocular dominance to regulation by monocular deprivation is the canonical model of plasticity confined to a critical period. However, we have previously shown that visual deprivation through dark exposure (DE) reactivates critical period plasticity in adults. Previous work assumed that the elimination of visual input was sufficient to enhance plasticity in the adult mouse visual cortex. In contrast, here we show that light reintroduction (LRx) after DE is responsible for the reactivation of plasticity. LRx triggers degradation of the ECM, which is blocked by pharmacological inhibition or genetic ablation of matrix metalloproteinase-9 (MMP-9). LRx induces an increase in MMP-9 activity that is perisynaptic and enriched at thalamo-cortical synapses. The reactivation of plasticity by LRx is absent in Mmp9-/- mice, and is rescued by hyaluronidase, an enzyme that degrades core ECM components. Thus, the LRx-induced increase in MMP-9 removes constraints on structural and functional plasticity in the mature cortex.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Ryk controls remapping of motor cortex during functional recovery after spinal cord injury.

  • Hollis ER
  • Nat. Neurosci.
  • 2017 Aug 29

Literature context: g #Z0334, RRID:AB_10013382).


Abstract:

Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in Ryk conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in Ryk conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.

Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy.

  • Buckmaster PS
  • J. Comp. Neurol.
  • 2017 Aug 1

Literature context: Denmark) (RRID:AB_10013382) was used


Abstract:

Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy.

Corticosterone primes the neuroinflammatory response to Gulf War Illness-relevant organophosphates independently of acetylcholinesterase inhibition.

  • Locker AR
  • J. Neurochem.
  • 2017 Aug 13

Literature context: onal antibody to GFAP (1 : 400; RRID:AB_10013382; DAKO, Carpenteria, CA, USA) wa


Abstract:

Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting veterans of the 1991 Gulf War. Among the symptoms of GWI are those associated with sickness behavior, observations suggestive of underlying neuroinflammation. We have shown that exposure of mice to the stress hormone, corticosterone (CORT), and to diisopropyl fluorophosphate (DFP), as a nerve agent mimic, results in marked neuroinflammation, findings consistent with a stress/neuroimmune basis of GWI. Here, we examined the contribution of irreversible and reversible acetylcholinesterase (AChE) inhibitors to neuroinflammation in our mouse model of GWI. Male C57BL/6J mice received 4 days of CORT (400 mg/L) in the drinking water followed by a single dose of chlorpyrifos oxon (CPO; 8 mg/kg, i.p.), DFP (4 mg/kg, i.p.), pyridostigmine bromide (PB; 3 mg/kg, i.p.), or physostigmine (PHY; 0.5 mg/kg, i.p.). CPO and DFP alone caused cortical and hippocampal neuroinflammation assessed by qPCR of tumor necrosis factor-alpha, IL-6, C-C chemokine ligand 2, IL-1β, leukemia inhibitory factor and oncostatin M; CORT pretreatment markedly augmented these effects. Additionally, CORT exposure prior to DFP or CPO enhanced activation of the neuroinflammation signal transducer, signal transducer and activator of transcription 3 (STAT3). In contrast, PHY or PB alone or with CORT pretreatment did not produce neuroinflammation or STAT3 activation. While all of the CNS-acting AChE inhibitors (DFP, CPO, and PHY) decreased brain AChE activity, CORT pretreatment abrogated these effects for the irreversible inhibitors. Taken together, these findings suggest that irreversible AChE inhibitor-induced neuroinflammation and particularly its exacerbation by CORT, result from non-cholinergic effects of these compounds, pointing potentially to organophosphorylation of other neuroimmune targets.

A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions.

  • Liu Y
  • Neuron
  • 2017 Aug 16

Literature context: 4; RRID:AB_10013382 Rabbit polyclonal anti-PKC gamm


Abstract:

A major hurdle for functional recovery after both spinal cord injury and cortical stroke is the limited regrowth of the axons in the corticospinal tract (CST) that originate in the motor cortex and innervate the spinal cord. Despite recent advances in engaging the intrinsic mechanisms that control CST regrowth, it remains to be tested whether such methods can promote functional recovery in translatable settings. Here we show that post-lesional AAV-assisted co-expression of two soluble proteins, namely insulin-like growth factor 1 (IGF1) and osteopontin (OPN), in cortical neurons leads to robust CST regrowth and the recovery of CST-dependent behavioral performance after both T10 lateral spinal hemisection and a unilateral cortical stroke. In these mice, a compound able to increase axon conduction, 4-aminopyridine-3-methanol, promotes further improvement in CST-dependent behavioral tasks. Thus, our results demonstrate a potentially translatable strategy for restoring cortical dependent function after injury in the adult.

Sonic hedgehog signalling mediates astrocyte crosstalk with neurons to confer neuroprotection.

  • Ugbode CI
  • J. Neurochem.
  • 2017 Aug 9

Literature context: at# Z0334 RRID:AB_10013382; MAP2: Cov


Abstract:

Sonic hedgehog (SHH) is a glycoprotein associated with development that is also expressed in the adult CNS and released after brain injury. Since the SHH receptors patched homolog-1 and Smoothened are highly expressed on astrocytes, we hypothesized that SHH regulates astrocyte function. Primary mouse cortical astrocytes derived from embryonic Swiss mouse cortices, were treated with two chemically distinct agonists of the SHH pathway, which caused astrocytes to elongate and proliferate. These changes are accompanied by decreases in the major astrocyte glutamate transporter-1 and the astrocyte intermediate filament protein glial fibrillary acidic protein. Multisite electrophysiological recordings revealed that the SHH agonist, smoothened agonist suppressed neuronal firing in astrocyte-neuron co-cultures and this was abolished by the astrocyte metabolic inhibitor ethylfluoroacetate, revealing that SHH stimulation of metabolically active astrocytes influences neuronal firing. Using three-dimensional co-culture, MAP2 western blotting and immunohistochemistry, we show that SHH-stimulated astrocytes protect neurons from kainate-induced cell death. Altogether the results show that SHH regulation of astrocyte function represents an endogenous neuroprotective mechanism.

The Subventricular Zone Response to Stroke Is Not a Therapeutic Target of Anti-Nogo-A Immunotherapy.

  • Shepherd DJ
  • J. Neuropathol. Exp. Neurol.
  • 2017 Aug 1

Literature context: Rabbit antiGFAP Dako Z0334 [RRID:AB_10013382] 1:1000


Abstract:

Ischemic stroke is a leading cause of adult disability with no pharmacological treatments to promote the recovery of lost function. Neutralizing antibodies against the neurite outgrowth inhibitor Nogo-A have emerged as a promising treatment for subacute and chronic stroke in animal models; however, whether anti-Nogo-A treatment affects poststroke neurogenesis remains poorly understood. In this study, we confirmed expression of Nogo-A by neuroblasts in the adult rat subventricular zone (SVZ), a major neurogenic niche; however, we found no evidence that Nogo-A was expressed at the surface of these cells. In vitro migration assays demonstrated that Nogo-A signaling induced a modest reduction in neuroblast migration speed, while anti-Nogo-A antibodies had no effect on motility properties. Using a permanent distal middle cerebral artery occlusion model of cortical stroke, we found that the number of proliferating cells in the SVZ was unaffected in response to stroke, while neuroblast mobilization from the SVZ toward the stroke lesion correlated positively with lesion size. However, we found no evidence that proliferation or neuroblast mobilization were affected by anti-Nogo-A antibody treatment. Our results suggest that the SVZ is not a therapeutic target of anti-Nogo-A immunotherapy, and contribute to our understanding of the SVZ response to cortical stroke.

Funding information:
  • NINDS NIH HHS - K08NS048858(United States)

Persistent Expression of VCAM1 in Radial Glial Cells Is Required for the Embryonic Origin of Postnatal Neural Stem Cells.

  • Hu XL
  • Neuron
  • 2017 Jul 19

Literature context: t# Z0334; RRID:AB_10013382 Chicken po


Abstract:

During development, neural stem cells (NSCs) undergo transitions from neuroepithelial cells to radial glial cells (RGCs), and later, a subpopulation of slowly dividing RGCs gives rise to the quiescent adult NSCs that populate the ventricular-subventricular zone (V-SVZ). Here we show that VCAM1, a transmembrane protein previously found in quiescent adult NSCs, is expressed by a subpopulation of embryonic RGCs, in a temporal and region-specific manner. Loss of VCAM1 reduced the number of active embryonic RGCs by stimulating their premature neuronal differentiation while preventing quiescence in the slowly dividing RGCs. This in turn diminished the embryonic origin of postnatal NSCs, resulting in loss of adult NSCs and defective V-SVZ regeneration. VCAM1 affects the NSC fate by signaling through its intracellular domain to regulate β-catenin signaling in a context-dependent manner. Our findings provide new insight on how stem cells in the embryo are preserved to meet the need for growth and regeneration.

Funding information:
  • NINDS NIH HHS - R37 NS019904(United States)

Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

  • Semerci F
  • Elife
  • 2017 Jul 12

Literature context: ako Cat# Z0334 RRID:AB_10013382) at 1:1000 rabbit anti-Ki67 (Ve


Abstract:

Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe (Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

Funding information:
  • NCI NIH HHS - P30 CA125123()
  • NCRR NIH HHS - S10 RR024574()
  • NIAID NIH HHS - P30 AI036211()
  • NICHD NIH HHS - U54 HD083092()
  • NIDCD NIH HHS - R01 DC006185()
  • NIDCD NIH HHS - R01 DC014832()
  • NIH HHS - S10 OD016167()

Epidermal growth factor signals attenuate phenotypic and functional development of neocortical GABA neurons.

  • Namba H
  • J. Neurochem.
  • 2017 Jun 13

Literature context: mation, Glostrup, Denmark, RRID:AB_10013382), anti-γ enolase (neuron specif


Abstract:

Phenotypic development of neocortical GABA neurons is highly plastic and promoted by various neurotrophic factors such as neuregulin-1. A subpopulation of GABA neurons expresses not only neuregulin receptor (ErbB4) but also epidermal growth factor (EGF) receptor (ErbB1) during development, but the neurobiological action of EGF on this cell population is less understood than that of neuregulin-1. Here, we examined the effects of exogenous EGF on immature GABA neurons both in culture and in vivo and also explored physiological consequences in adults. We prepared low density cultures from the neocortex of rat embryos and treated neocortical neurons with EGF. EGF decreased protein levels of glutamic acid decarboxylases (GAD65 and GAD67), and EGF influences on neuronal survival and glial proliferation were negligible or limited. The EGF treatment also diminished the frequency of miniature inhibitory postsynaptic currents (mIPSCs). In vivo administration of EGF to mouse pups reproduced the above GABAergic phenomena in neocortical culture. In EGF-injected postnatal mice, GAD- and parvalbumin-immunoreactivities were reduced in the frontal cortex. In addition, postnatal EGF treatment decreased mIPSC frequency in, and the density of, GABAergic terminals on pyramidal cells. Although these phenotypic influences on GABA neurons became less marked during development, it later resulted in the reduced β- and γ-powers of sound-evoked electroencephalogram in adults, which is regulated by parvalbumin-positive GABA neurons and implicated in the schizophrenia pathophysiology. These findings suggest that, in contrast to the ErbB4 ligand of neuregulin-1, the ErbB1 ligand of EGF exerts unique maturation-attenuating influences on developing cortical GABAergic neurons.

Funding information:
  • Wellcome Trust - 090108/Z/09/Z(United Kingdom)

Retinal changes in the Tg-SwDI mouse model of Alzheimer's disease.

  • Oliveira-Souza FG
  • Neuroscience
  • 2017 Jun 23

Literature context: t# Z0334, RRID:AB_10013382). In mamma


Abstract:

Alzheimer's disease (AD), a debilitating neurodegenerative illness, is characterized by neuronal cell loss, mental deficits, and abnormalities in several neurotransmitter and protein systems. AD is also associated with visual disturbances, but their causes remain unidentified. We hypothesize that the visual disturbances stem from retinal changes, particularly changes in the retinal cholinergic system, and that the etiology in the retina parallels the etiology in the rest of the brain. To test our hypothesis, quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC) were employed to assess changes in acetylcholine receptor (AChR) gene expression, number of retinal cells, and astrocytic gliosis in the Transgenic Swedish, Dutch and Iowa (Tg-SwDI) mouse model as compared to age-matched wild-type (WT). We observed that Tg-SwDI mice showed an initial upregulation of AChR gene expression early on (young adults and middle-aged adults), but a downregulation later on (old adults). Furthermore, transgenic animals displayed significant cell loss in the photoreceptor layer and inner retina of the young adult animals, as well as specific cholinergic cell loss, and increased astrocytic gliosis in the middle-aged adult and old adult groups. Our results suggest that the changes observed in AD cerebrum are also present in the retina and may be, at least in part, responsible for the visual deficits associated with the disease.

Funding information:
  • NEI NIH HHS - P30 EY003039()
  • NINDS NIH HHS - P30 NS047466()

Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty.

  • Mohr MA
  • Endocrinology
  • 2017 Jun 5

Literature context:


Abstract:

The anteroventral periventricular nucleus (AVPV) orchestrates the neuroendocrine-positive feedback response that triggers ovulation in female rodents. The AVPV is larger and more cell-dense in females than in males, and during puberty, only females develop the capacity to show a positive feedback response. We previously reported a potential new mechanism to explain this female-specific gain of function during puberty, namely a female-biased sex difference in the pubertal addition of new cells to the rat AVPV. Here we first asked whether this sex difference is due to greater cell proliferation and/or survival in females. Female and male rats received the cell birthdate marker 5-bromo-2'-deoxyuridine (BrdU; 200 mg/kg, ip) on postnatal day (P) 30; brains were collected at short and long intervals after BrdU administration to assess cell proliferation and survival, respectively. Overall, females had more BrdU-immunoreactive cells in the AVPV than did males, with no sex differences in the rate of cell attrition over time. Thus, the sex difference in pubertal addition of AVPV cells appears to be due to greater cell proliferation in females. Next, to determine the phenotype of pubertally born AVPV cells, daily BrdU injections were given to female rats on P28-56, and tissue was collected on P77 to assess colocalization of BrdU and markers for mature neurons or glia. Of the pubertally born AVPV cells, approximately 15% differentiated into neurons, approximately 19% into astrocytes, and approximately 23% into microglia. Thus, both neuro- and gliogenesis occur in the pubertal female rat AVPV and potentially contribute to maturation of female reproductive function.

Funding information:
  • NIMH NIH HHS - R01 MH059950(United States)

Gli1+ Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target.

  • Schneider RK
  • Cell Stem Cell
  • 2017 Jun 1

Literature context: t# Z0334, RRID:AB_10013382 CD31-AF647


Abstract:

Bone marrow fibrosis (BMF) develops in various hematological and non-hematological conditions and is a central pathological feature of myelofibrosis. Effective cell-targeted therapeutics are needed, but the cellular origin of BMF remains elusive. Here, we show using genetic fate tracing in two murine models of BMF that Gli1+ mesenchymal stromal cells (MSCs) are recruited from the endosteal and perivascular niche to become fibrosis-driving myofibroblasts in the bone marrow. Genetic ablation of Gli1+ cells abolished BMF and rescued bone marrow failure. Pharmacological targeting of Gli proteins with GANT61 inhibited Gli1+ cell expansion and myofibroblast differentiation and attenuated fibrosis severity. The same pathway is also active in human BMF, and Gli1 expression in BMF significantly correlates with the severity of the disease. In addition, GANT61 treatment reduced the myofibroblastic phenotype of human MSCs isolated from patients with BMF, suggesting that targeting of Gli proteins could be a relevant therapeutic strategy.

Neuroprotection and Blood-Brain Barrier Restoration by Salubrinal After a Cortical Stab Injury.

  • Barreda-Manso MA
  • J. Cell. Physiol.
  • 2017 Jun 18

Literature context: onectinAB_447655Rabbit1:200AbcamGFAPAB_10013382Rabbit1:2000DAKOGFAPAB_477035Mouse1:200DAKOIba1A


Abstract:

Following a central nervous system (CNS) injury, restoration of the blood-brain barrier (BBB) integrity is essential for recovering homeostasis. When this process is delayed or impeded, blood substances and cells enter the CNS parenchyma, initiating an additional inflammatory process that extends the initial injury and causes so-called secondary neuronal loss. Astrocytes and profibrotic mesenchymal cells react to the injury and migrate to the lesion site, creating a new glia limitans that restores the BBB. This process is beneficial for the resolution of the inflammation, neuronal survival, and the initiation of the healing process. Salubrinal is a small molecule with neuroprotective properties in different animal models of stroke and trauma to the CNS. Here, we show that salubrinal increased neuronal survival in the neighbourhood of a cerebral cortex stab injury. Moreover, salubrinal reduced cortical blood leakage into the parenchyma of injured animals compared with injured controls. Adjacent to the site of injury, salubrinal induced immunoreactivity for platelet-derived growth factor subunit B (PDGF-B), a specific mitogenic factor for mesenchymal cells. This effect might be responsible for the increased immunoreactivity for fibronectin and the decreased activation of microglia and macrophages in injured mice treated with salubrinal, compared with injured controls. The immunoreactivity for PDGF-B colocalized with neuronal nuclei (NeuN), suggesting that cortical neurons in the proximity of the injury were the main source of PDGF-B. Our results suggest that after an injury, neurons play an important role in both, the healing process and the restoration of the BBB integrity. J. Cell. Physiol. 232: 1501-1510, 2017. © 2016 Wiley Periodicals, Inc.

Funding information:
  • Wellcome Trust - 102645(United Kingdom)

Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier.

  • Vatine GD
  • Cell Stem Cell
  • 2017 Jun 1

Literature context: Z0334; RRID:AB_10013382 Glut-1 The


Abstract:

Inactivating mutations in the thyroid hormone (TH) transporter Monocarboxylate transporter 8 (MCT8) cause severe psychomotor retardation in children. Animal models do not reflect the biology of the human disease. Using patient-specific induced pluripotent stem cells (iPSCs), we generated MCT8-deficient neural cells that showed normal TH-dependent neuronal properties and maturation. However, the blood-brain barrier (BBB) controls TH entry into the brain, and reduced TH availability to neural cells could instead underlie the diseased phenotype. To test potential BBB involvement, we generated an iPSC-based BBB model of MCT8 deficiency, and we found that MCT8 was necessary for polarized influx of the active form of TH across the BBB. We also found that a candidate drug did not appreciably cross the mutant BBB. Our results therefore clarify the underlying physiological basis of this disorder, and they suggest that circumventing the diseased BBB to deliver active TH to the brain could be a viable therapeutic strategy.

Rai1 frees mice from the repression of active wake behaviors by light.

  • Diessler S
  • Elife
  • 2017 May 26

Literature context: P, 1:500, RRID:AB_10013382, #Z0334, D


Abstract:

Besides its role in vision, light impacts physiology and behavior through circadian and direct (aka 'masking') mechanisms. In Smith-Magenis syndrome (SMS), the dysregulation of both sleep-wake behavior and melatonin production strongly suggests impaired non-visual light perception. We discovered that mice haploinsufficient for the SMS causal gene, Retinoic acid induced-1 (Rai1), were hypersensitive to light such that light eliminated alert and active-wake behaviors, while leaving time-spent-awake unaffected. Moreover, variables pertaining to circadian rhythm entrainment were activated more strongly by light. At the input level, the activation of rod/cone and suprachiasmatic nuclei (SCN) by light was paradoxically greatly reduced, while the downstream activation of the ventral-subparaventricular zone (vSPVZ) was increased. The vSPVZ integrates retinal and SCN input and, when activated, suppresses locomotor activity, consistent with the behavioral hypersensitivity to light we observed. Our results implicate Rai1 as a novel and central player in processing non-visual light information, from input to behavioral output.

Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures.

  • Bohlen CJ
  • Neuron
  • 2017 May 17

Literature context: t# Z0334; RRID:AB_10013382 O4 hybrido


Abstract:

Microglia, the resident macrophages of the CNS, engage in various CNS-specific functions that are critical for development and health. To better study microglia and the properties that distinguish them from other tissue macrophage populations, we have optimized serum-free culture conditions to permit robust survival of highly ramified adult microglia under defined-medium conditions. We find that astrocyte-derived factors prevent microglial death ex vivo and that this activity results from three primary components, CSF-1/IL-34, TGF-β2, and cholesterol. Using microglial cultures that have never been exposed to serum, we demonstrate a dramatic and lasting change in phagocytic capacity after serum exposure. Finally, we find that mature microglia rapidly lose signature gene expression after isolation, and that this loss can be reversed by engrafting cells back into an intact CNS environment. These data indicate that the specialized gene expression profile of mature microglia requires continuous instructive signaling from the intact CNS.

Funding information:
  • NIDA NIH HHS - R01 DA015043()
  • NIMH NIH HHS - K08 MH112120()
  • NIMH NIH HHS - T32 MH019938()

Mosaic Analysis with Double Markers Reveals Distinct Sequential Functions of Lgl1 in Neural Stem Cells.

  • Beattie R
  • Neuron
  • 2017 May 3

Literature context: at#Z0334; RRID:AB_10013382 Ki67 - Rab


Abstract:

The concerted production of neurons and glia by neural stem cells (NSCs) is essential for neural circuit assembly. In the developing cerebral cortex, radial glia progenitors (RGPs) generate nearly all neocortical neurons and certain glia lineages. RGP proliferation behavior shows a high degree of non-stochasticity, thus a deterministic characteristic of neuron and glia production. However, the cellular and molecular mechanisms controlling RGP behavior and proliferation dynamics in neurogenesis and glia generation remain unknown. By using mosaic analysis with double markers (MADM)-based genetic paradigms enabling the sparse and global knockout with unprecedented single-cell resolution, we identified Lgl1 as a critical regulatory component. We uncover Lgl1-dependent tissue-wide community effects required for embryonic cortical neurogenesis and novel cell-autonomous Lgl1 functions controlling RGP-mediated glia genesis and postnatal NSC behavior. These results suggest that NSC-mediated neuron and glia production is tightly regulated through the concerted interplay of sequential Lgl1-dependent global and cell intrinsic mechanisms.

A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis.

  • Ma S
  • Dev. Cell
  • 2017 May 22

Literature context: # Z 0334; RRID:AB_10013382 Rabbit ant


Abstract:

Intimate communication between neural and vascular cells is critical for normal brain development and function. Germinal matrix (GM), a key primordium for the brain reward circuitry, is unique among brain regions for its distinct pace of angiogenesis and selective vulnerability to hemorrhage during development. A major neonatal condition, GM hemorrhage can lead to cerebral palsy, hydrocephalus, and mental retardation. Here we identify a brain-region-specific neural progenitor-based signaling pathway dedicated to regulating GM vessel development. This pathway consists of cell-surface sphingosine-1-phosphate receptors, an intracellular cascade including Gα co-factor Ric8a and p38 MAPK, and target gene integrin β8, which in turn regulates vascular TGF-β signaling. These findings provide insights into region-specific specialization of neurovascular communication, with special implications for deciphering potent early-life endocrine, as well as potential gut microbiota impacts on brain reward circuitry. They also identify tissue-specific molecular targets for GM hemorrhage intervention.

Funding information:
  • NINDS NIH HHS - R01 NS076729()

Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions.

  • Petkovich DA
  • Cell Metab.
  • 2017 Apr 4

Literature context: at#Z0334; RRID:AB_10013382 TUJ-1 anti


Abstract:

The DNA methylation levels of certain CpG sites are thought to reflect the pace of human aging. Here, we developed a robust predictor of mouse biological age based on 90 CpG sites derived from partial blood DNA methylation profiles. The resulting clock correctly determines the age of mouse cohorts, detects the longevity effects of calorie restriction and gene knockouts, and reports rejuvenation of fibroblast-derived iPSCs. The data show that mammalian DNA methylomes are characterized by CpG sites that may represent the organism's biological age. They are scattered across the genome, they are distinct in human and mouse, and their methylation gradually changes with age. The clock derived from these sites represents a biomarker of aging and can be used to determine the biological age of organisms and evaluate interventions that alter the rate of aging.

Funding information:
  • NIA NIH HHS - DP1 AG047745()
  • NIA NIH HHS - P01 AG047200()
  • NIA NIH HHS - P30 AG024824()
  • NIA NIH HHS - R01 AG019899()

Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain.

  • Espuny-Camacho I
  • Neuron
  • 2017 Mar 8

Literature context: at# Z0334 RRID:AB_10013382 GFAP Synap


Abstract:

Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease.

EphA4 Regulates Neuroblast and Astrocyte Organization in a Neurogenic Niche.

  • Todd KL
  • J. Neurosci.
  • 2017 Mar 22

Literature context: 00 (DAKO, RRID:AB_10013382), mouse an


Abstract:

Significant migration cues are required to guide and contain newly generated rodent subventricular zone (SVZ) neuroblasts as they transit along the lateral ventricles and then through the anterior forebrain to their ultimate site of differentiation in the olfactory bulbs (OBs). These cues enforce strict neuroblast spatial boundaries within the dense astroglial meshwork of the SVZ and rostral migratory stream (RMS), yet are permissive to large-scale neuroblast migration. Therefore, the molecular mechanisms that define these cues and control dynamic interactions between migratory neuroblasts and surrounding astrocytes are of particular interest. We found that deletion of EphA4 and specifically ablation of EphA4 kinase activity resulted in misaligned neuroblasts and disorganized astrocytes in the RMS/SVZ, linking EphA4 forward signaling to SVZ and RMS spatial organization, orientation, and regulation. In addition, within a 3 week period, there was a significant reduction in the number of neuroblasts that reached the OB and integrated into the periglomerular layer, revealing a crucial role for EphA4 in facilitating efficient neuroblast migration to the OB. Single-cell analysis revealed that EPHA4 and its EFN binding partners are expressed by subpopulations of neuroblasts and astrocytes within the SVZ/RMS/OB system resulting in a cell-specific mosaic, suggesting complex EphA4 signaling involving both homotypic and heterotypic cell-cell interactions. Together, our studies reveal a novel molecular mechanism involving EphA4 signaling that functions in stem cell niche organization and ultimately neuroblast migration in the anterior forebrain.SIGNIFICANCE STATEMENT The subventricular zone neurogenic stem cell niche generates highly migratory neuroblasts that transit the anterior forebrain along a defined pathway to the olfactory bulb. Postnatal and adult brain organization dictates strict adherence to a narrow migration corridor. Subventricular zone neuroblasts are aligned in tightly bundled chains within a meshwork of astrocytes; however, the cell-cell cues that organize this unique, cell-dense migration pathway are largely unknown. Our studies show that forward signaling through the EphA4 tyrosine kinase receptor, mediated by ephrins expressed by subpopulations of neuroblasts and astrocytes, is required for compact, directional organization of neuroblasts and astrocytes within the pathway and efficient transit of neuroblasts through the anterior forebrain to the olfactory bulb.

Arundic Acid Prevents Developmental Upregulation of S100B Expression and Inhibits Enteric Glial Development.

  • Hao MM
  • Front Cell Neurosci
  • 2017 Mar 10

Literature context: ko Z0334; RRID:AB_10013382); rabbit a


Abstract:

S100B is expressed in various types of glial cells and is involved in regulating many aspects of their function. However, little is known about its role during nervous system development. In this study, we investigated the effect of inhibiting the onset of S100B synthesis in the development of the enteric nervous system, a network of neurons and glia located in the wall of the gut that is vital for control of gastrointestinal function. Intact gut explants were taken from embryonic day (E)13.5 mice, the day before the first immunohistochemical detection of S100B, and cultured in the presence of arundic acid, an inhibitor of S100B synthesis, for 48 h. The effects on Sox10-immunoreactive enteric neural crest progenitors and Hu-immunoreactive enteric neurons were then analyzed. Culture in arundic acid reduced the proportion of Sox10+ cells and decreased cell proliferation. There was no change in the density of Hu+ enteric neurons, however, a small population of cells exhibited atypical co-expression of both Sox10 and Hu, which was not observed in control cultures. Addition of exogenous S100B to the cultures did not change Sox10+ cell numbers. Overall, our data suggest that cell-intrinsic intracellular S100B is important for maintaining Sox10 and proliferation of the developing enteric glial lineage.

Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons.

  • Cao M
  • Neuron
  • 2017 Feb 22

Literature context: t# Z0334; RRID:AB_10013382 Rabbit pol


Abstract:

Synaptojanin 1 (SJ1) is a major presynaptic phosphatase that couples synaptic vesicle endocytosis to the dephosphorylation of PI(4,5)P2, a reaction needed for the shedding of endocytic factors from their membranes. While the role of SJ1's 5-phosphatase module in this process is well recognized, the contribution of its Sac phosphatase domain, whose preferred substrate is PI4P, remains unclear. Recently a homozygous mutation in its Sac domain was identified in early-onset parkinsonism patients. We show that mice carrying this mutation developed neurological manifestations similar to those of human patients. Synapses of these mice displayed endocytic defects and a striking accumulation of clathrin-coated intermediates, strongly implicating Sac domain's activity in endocytic protein dynamics. Mutant brains had elevated auxilin (PARK19) and parkin (PARK2) levels. Moreover, dystrophic axonal terminal changes were selectively observed in dopaminergic axons in the dorsal striatum. These results strengthen evidence for a link between synaptic endocytic dysfunction and Parkinson's disease.

Funding information:
  • NCATS NIH HHS - UL1 TR001863()
  • NIDA NIH HHS - P30 DA018343()
  • NIGMS NIH HHS - P41 GM103412()
  • NINDS NIH HHS - R01 NS036251()
  • NINDS NIH HHS - R01 NS036942()
  • NINDS NIH HHS - R37 NS036251()
  • NINDS NIH HHS - R37 NS036942()

Soluble cpg15 from Astrocytes Ameliorates Neurite Outgrowth Recovery of Hippocampal Neurons after Mouse Cerebral Ischemia.

  • Zhao JJ
  • J. Neurosci.
  • 2017 Feb 8

Literature context: g #Z0334, RRID:AB_10013382). After th


Abstract:

The present study focuses on the function of cpg15, a neurotrophic factor, in ischemic neuronal recovery using transient global cerebral ischemic (TGI) mouse model and oxygen-glucose deprivation (OGD)-treated primary cultured cells. The results showed that expression of cpg15 proteins in astrocytes, predominantly the soluble form, was significantly increased in mouse hippocampus after TGI and in the cultured astrocytes after OGD. Addition of the medium from the cpg15-overexpressed astrocytic culture into the OGD-treated hippocampal neuronal cultures reduces the neuronal injury, whereas the recovery of neurite outgrowths of OGD-injured neurons was prevented when cpg15 in the OGD-treated astrocytes was knocked down, or the OGD-treated-astrocytic medium was immunoadsorbed by cpg15 antibody. Furthermore, lentivirus-delivered knockdown of cpg15 expression in mouse hippocampal astrocytes diminishes the dendritic branches and exacerbates injury of neurons in CA1 region after TGI. In addition, treatment with inhibitors of MEK1/2, PI3K, and TrkA decreases, whereas overexpression of p-CREB, but not dp-CREB, increases the expression of cpg15 in U118 or primary cultured astrocytes. Also, it is observed that the Flag-tagged soluble cpg15 from the astrocytes transfected with Flag-tagged cpg15-expressing plasmids adheres to the surface of neuronal bodies and the neurites. In conclusion, our results suggest that the soluble cpg15 from astrocytes induced by ischemia could ameliorate the recovery of the ischemic-injured hippocampal neurons via adhering to the surface of neurons. The upregulated expression of cpg15 in astrocytes may be activated via MAPK and PI3K signal pathways, and regulation of CREB phosphorylation.SIGNIFICANCE STATEMENT Neuronal plasticity plays a crucial role in the amelioration of neurological recovery of ischemic injured brain, which remains a challenge for clinic treatment of cerebral ischemia. cpg15 as a synaptic plasticity-related factor may participate in promoting the recovery process; however, the underlying mechanisms are still largely unknown. The objective of this study is to reveal the function and mechanism of neuronal-specific cpg15 expressed in astrocytes after ischemia induction, in promoting the recovery of injured neurons. Our findings provided new mechanistic insight into the neurological recovery, which might help develop novel therapeutic options for cerebral ischemia via astrocytic-targeting interference of gene expression.

Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes.

  • Agarwal A
  • Neuron
  • 2017 Feb 8

Literature context: t# Z0334; RRID:AB_10013382 Rabbit pol


Abstract:

Astrocytes extend highly branched processes that form functionally isolated microdomains, facilitating local homeostasis by redistributing ions, removing neurotransmitters, and releasing factors to influence blood flow and neuronal activity. Microdomains exhibit spontaneous increases in calcium (Ca2+), but the mechanisms and functional significance of this localized signaling are unknown. By developing conditional, membrane-anchored GCaMP3 mice, we found that microdomain activity that occurs in the absence of inositol triphosphate (IP3)-dependent release from endoplasmic reticulum arises through Ca2+ efflux from mitochondria during brief openings of the mitochondrial permeability transition pore. These microdomain Ca2+ transients were facilitated by the production of reactive oxygen species during oxidative phosphorylation and were enhanced by expression of a mutant form of superoxide dismutase 1 (SOD1 G93A) that causes astrocyte dysfunction and neurodegeneration in amyotrophic lateral sclerosis (ALS). By localizing mitochondria to microdomains, astrocytes ensure local metabolic support for energetically demanding processes and enable coupling between metabolic demand and Ca2+ signaling events.

Funding information:
  • NIMH NIH HHS - P50 MH084020()
  • NIMH NIH HHS - P50 MH100024()
  • NINDS NIH HHS - P30 NS050274()

Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans.

  • Chrenek R
  • J. Comp. Neurol.
  • 2017 Feb 15

Literature context: ein) IgG [RRID:AB_10013382, DAKO, Car


Abstract:

Neural stem cells (NSCs) reside in a unique microenvironment within the central nervous system (CNS) called the NSC niche. Although they are relatively rare, niches have been previously characterized in both the brain and spinal cord of adult animals. Recently, another potential NSC niche has been identified in the filum terminale (FT), which is a thin band of tissue at the caudal end of the spinal cord. While previous studies have demonstrated that NSCs can be isolated from the FT, the in vivo architecture of this tissue and its relation to other NSC niches in the CNS has not yet been established. In this article we report a histological analysis of the FT NSC niche in postnatal rats and humans. Immunohistochemical characterization reveals that the FT is mitotically active and its cells express similar markers to those in other CNS niches. In addition, the organization of the FT most closely resembles that of the adult spinal cord niche. J. Comp. Neurol. 525:661-675, 2017. © 2016 Wiley Periodicals, Inc.

Heterogeneity of astrocyte and NG2 cell insertion at the node of ranvier.

  • Serwanski DR
  • J. Comp. Neurol.
  • 2017 Feb 15

Literature context: NG2; AB_10013382; RRID: AB_


Abstract:

The node of Ranvier is a functionally important site on the myelinated axon where sodium channels are clustered and regeneration of action potentials occurs, allowing fast saltatory conduction of action potentials. Early ultrastructural studies have revealed the presence of "glia" or "astrocytes" at the nodes. NG2 cells, also known as oligodendrocyte precursor cells or polydendrocytes, which are a resident glial cell population in the mature mammalian central nervous system that is distinct from astrocytes, have also been shown to extend processes that contact the nodes. However, the prevalence of the two types of glia at the node has remained unknown. We have used specific cell surface markers to examine the association of NG2 cells and astrocytes with the nodes of Ranvier in the optic nerve, corpus callosum, and spinal cord of young adult mice or rats. We show that more than 95% of the nodes in all three regions contained astrocyte processes, while 33-49% of nodes contained NG2 cell processes. NG2 cell processes were associated more frequently with larger nodes. A few nodes were devoid of glial apposition. Electron microscopy and stimulated emission depletion (STED) super-resolution microscopy confirmed the presence of dual glial insertion at some nodes and further revealed that NG2 cell processes contacted the nodal membrane at discrete points, while astrocytes had broader processes that surrounded the nodes. The study provides the first systematic quantitative analysis of glial cell insertions at central nodes of Ranvier. J. Comp. Neurol. 525:535-552, 2017. © 2016 Wiley Periodicals, Inc.

Variability in the number of abdominal leucokinergic neurons in adult Drosophila melanogaster.

  • Alvarez-Rivero J
  • J. Comp. Neurol.
  • 2017 Feb 15

Literature context: ein) IgG [RRID:AB_10013382, DAKO, Car


Abstract:

Developmental plasticity allows individuals with the same genotype to show different phenotypes in response to environmental changes. An example of this is how neuronal diversity is protected at the expense of neuronal number under sustained undernourishment during the development of the Drosophila optic lobe. In the development of the Drosophila central nervous system, neuroblasts go through two phases of neurogenesis separated by a period of mitotic quiescence. Although during embryonic development much evidence indicates that both cell number and the cell fates generated by each neuroblast are very precisely controlled in a cell autonomous manner, after quiescence extrinsic factors control the reactivation of neuroblast proliferation in a fashion that has not yet been elucidated. Moreover, there is very little information about whether environmental changes affect lineage progression during postembryonic neurogenesis. Using as a model system the pattern of abdominal leucokinergic neurons (ABLKs), we have analyzed how changes in a set of environmental factors affect the number of ABLKs generated during postembryonic neurogenesis. We describe the variability in ABLK number between individuals and between hemiganglia of the same individual and, by genetic analysis, we identify the bithorax-complex genes and the ecdysone hormone as critical factors in these differences. We also explore the possible adaptive roles involved in this process. J. Comp. Neurol. 525:639-660, 2017. © 2016 Wiley Periodicals, Inc.

Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats.

  • Shepherd DJ
  • Front Neurosci
  • 2016 Nov 2

Literature context: :500Rabbit anti-GFAPDako Z0334 [RRID: AB_10013382]1:1000Mouse IgG1 anti-GFAPChemi


Abstract:

Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis.

Funding information:
  • NINDS NIH HHS - NS072030(United States)

Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knock-down.

  • Willenberg R
  • J. Comp. Neurol.
  • 2016 Sep 1

Literature context: g #Z0334, RRID:AB_10013382; Table 3).


Abstract:

Corticospinal tract (CST) axons from one hemisphere normally extend and terminate predominantly in the contralateral spinal cord. We previously showed that deleting the gene phosphatase and tensin homolog (PTEN) in the sensorimotor cortex enables CST axons to regenerate after spinal cord injury and that some regenerating axons extend along the "wrong" side. Here, we characterize the degree of specificity of regrowth in terms of laterality. PTEN was selectively deleted via cortical adeno-associated virus (AAV)-Cre injections in neonatal PTEN-floxed mice. As adults, mice received dorsal hemisection injuries at T12 or complete crush injuries at T9. CST axons from one hemisphere were traced by unilateral biotinylated dextran amine (BDA) injections in PTEN-deleted mice with spinal cord injury and in noninjured PTEN-floxed mice that had not received AAV-Cre. In noninjured mice, 97.9 ± 0.7% of BDA-labeled axons in white matter and 88.5 ± 1.0% of BDA-labeled axons in gray matter were contralateral to the cortex of origin. In contrast, laterality of CST axons that extended past a lesion due to PTEN deletion varied across animals. In some cases, regenerated axons extended predominantly on the ipsilateral side; in other cases, axons extended predominantly contralaterally, and in others, axons were similar in numbers on both sides. Similar results were seen in analyses of cases from previous studies using short hairpin (sh)RNA-mediated PTEN knock-down. These results indicate that CST axons that extend past a lesion due to PTEN deletion or knock-down do not maintain the contralateral rule of the noninjured CST, highlighting one aspect of how the resultant circuitry from regenerating axons may differ from that of the uninjured CST. J. Comp. Neurol. 524:2654-2676, 2016. © 2016 Wiley Periodicals, Inc.

Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into the central nervous system.

  • Tong HI
  • Int J Pharm
  • 2016 May 30

Literature context: lial fibrillary acidic protein (GFAP, 1/500, DaKo Cytomation #Z0334). Secondary antibody conjugated


Abstract:

This study was designed to use superparamagnetic iron oxide nanoparticles (SPIONs) as evaluating tools to study monocyte-derived macrophages (MDM)-mediated delivery of small molecular agents into the diseased brains. MDM were tested with different-configured SPIONs at selected concentrations for their impacts on carrier cells' physiological and migratory properties, which were found to depend largely on particle size, coating, and treatment concentrations. SHP30, a SPION of 30-nm core size with oleic acids plus amphiphilic polymer coating, was identified to have high cellular uptake efficiency and cause little cytotoxic effects on MDM. At lower incubation dose (25μg/mL), few alteration was observed in carrier cells' physiological and in vivo migratory functions, as tested in a lipopolysaccharide-induced acute neuroinflammation mouse model. Nevertheless, significant increase in monocyte-to-macrophage differentiation, and decrease in in vivo carrier MDM inflamed-brain homing ability were found in groups treated with a higher dose of SHP30at 100μg/mL. Overall, our results have identified MDM treatment at 25μg/mL SHP30 resulted in little functional changes, provided valuable parameters for using SPIONs as evaluating tools to study MDM-mediated therapeutics carriage and delivery, and supported the concepts of using monocytes-macrophages as cellular vehicles to transport small molecular agents to the brain.

Funding information:
  • NCI NIH HHS - P30 CA014195(United States)

Heme Oxygenase-1 Induction Prevents Autoimmune Diabetes in Association With Pancreatic Recruitment of M2-Like Macrophages, Mesenchymal Cells, and Fibrocytes.

  • Husseini M
  • Endocrinology
  • 2015 Nov 17

Literature context:


Abstract:

Immunoregulatory and regenerative processes are activated in the pancreas during the development of type 1 diabetes (T1D) but are insufficient to prevent the disease. We hypothesized that the induction of cytoprotective heme oxygenase-1 (HO-1) by cobalt protophoryrin (CoPP) would prevent T1D by promoting anti-inflammatory and pro-repair processes. Diabetes-prone BioBreeding rats received ip CoPP or saline twice per week for 3 weeks, starting at 30 days and were monitored for T1D. Immunohistochemistry, confocal microscopy, quantitative RT-PCR, and microarrays were used to evaluate postinjection pancreatic changes at 51 days, when islet inflammation is first visible. T1D was prevented in CoPP-treated rats (29% vs 73%). Pancreatic Hmox1 was up-regulated along with islet-associated CD68(+)HO-1(+) cells, which were also observed in a striking peri-lobular interstitial infiltrate. Most interstitial cells expressed the mesenchymal marker vimentin and the hematopoietic marker CD34. Spindle-shaped, CD34(+)vimentin(+) cells coexpressed collagen V, characteristic of fibrocytes. M2 macrophage factors Krüppel-like factor 4, CD163, and CD206 were expressed by interstitial cells, consistent with pancreatic upregulation of several M2-associated genes. CoPP upregulated islet-regenerating REG genes and increased neogenic REG3β(+) and insulin(+) clusters. Thus, short-term induction of HO-1 promoted a protective M2-like milieu in the pancreas and recruited mesenchymal cells, M2 macrophages, and fibrocytes that imparted immunoregulatory and pro-repair effects, preventing T1D.

Funding information:
  • NIGMS NIH HHS - R01 GM113722(United States)

Characterization of a unique cell population marked by transgene expression in the adult cochlea of nestin-CreER(T2)/tdTomato-reporter mice.

  • Chow CL
  • J. Comp. Neurol.
  • 2015 Jul 1

Literature context: at#70334, RRID:AB_10013382). This ant


Abstract:

Hair cells in the adult mammalian cochlea cannot spontaneously regenerate after damage, resulting in the permanency of hearing loss. Stem cells have been found to be present in the cochlea of young rodents; however, there has been little evidence for their existence into adulthood. We used nestin-CreER(T2)/tdTomato-reporter mice to trace the lineage of putative nestin-expressing cells and their progeny in the cochleae of adult mice. Nestin, an intermediate filament found in neural progenitor cells during early development and adulthood, is regarded as a multipotent and neural stem cell marker. Other investigators have reported its presence in postnatal and young adult rodents; however, there are discrepancies among these reports. Using lineage tracing, we documented a robust population of tdTomato-expressing cells and evaluated these cells at a series of adult time points. Upon activation of the nestin promoter, tdTomato was observed just below and medial to the inner hair cell layer. All cells colocalized with the stem cell and cochlear-supporting-cell marker Sox2 as well as the supporting cell and Schwann cell marker Sox10; however, they did not colocalize with the Schwann cell marker Krox20, spiral ganglion marker NF200, nor glial fibrillary acidic acid (GFAP)-expressing supporting cell marker. The cellular identity of this unique population of tdTomato-expressing cells in the adult cochlea of nestin-CreER(T2)/tdTomato mice remains unclear; however, these cells may represent a type of supporting cell on the neural aspect of the inner hair cell layer.

α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2.

  • Kett LR
  • J. Neurosci.
  • 2015 Apr 8

Literature context: g #Z0334; RRID:AB_10013382), GAPDH (1


Abstract:

Accumulating evidence from genetic and biochemical studies implicates dysfunction of the autophagic-lysosomal pathway as a key feature in the pathogenesis of Parkinson's disease (PD). Most studies have focused on accumulation of neurotoxic α-synuclein secondary to defects in autophagy as the cause of neurodegeneration, but abnormalities of the autophagic-lysosomal system likely mediate toxicity through multiple mechanisms. To further explore how endolysosomal dysfunction causes PD-related neurodegeneration, we generated a murine model of Kufor-Rakeb syndrome (KRS), characterized by early-onset Parkinsonism with additional neurological features. KRS is caused by recessive loss-of-function mutations in the ATP13A2 gene encoding the endolysosomal ATPase ATP13A2. We show that loss of ATP13A2 causes a specific protein trafficking defect, and that Atp13a2 null mice develop age-related motor dysfunction that is preceded by neuropathological changes, including gliosis, accumulation of ubiquitinated protein aggregates, lipofuscinosis, and endolysosomal abnormalities. Contrary to predictions from in vitro data, in vivo mouse genetic studies demonstrate that these phenotypes are α-synuclein independent. Our findings indicate that endolysosomal dysfunction and abnormalities of α-synuclein homeostasis are not synonymous, even in the context of an endolysosomal genetic defect linked to Parkinsonism, and highlight the presence of α-synuclein-independent neurotoxicity consequent to endolysosomal dysfunction.

Funding information:
  • NINDS NIH HHS - R01 NS090390(United States)

A novel and robust conditioning lesion induced by ethidium bromide.

  • Hollis ER
  • Exp. Neurol.
  • 2015 Mar 2

Literature context: t# Z0334, RRID:AB_10013382), rabbit a


Abstract:

Molecular and cellular mechanisms underlying the peripheral conditioning lesion remain unsolved. We show here that injection of a chemical demyelinating agent, ethidium bromide, into the sciatic nerve induces a similar set of regeneration-associated genes and promotes a 2.7-fold greater extent of sensory axon regeneration in the spinal cord than sciatic nerve crush. We found that more severe peripheral demyelination correlates with more severe functional and electrophysiological deficits, but more robust central regeneration. Ethidium bromide injection does not activate macrophages at the demyelinated sciatic nerve site, as observed after nerve crush, but briefly activates macrophages in the dorsal root ganglion. This study provides a new method for investigating the underlying mechanisms of the conditioning response and suggests that loss of the peripheral myelin may be a major signal to change the intrinsic growth state of adult sensory neurons and promote regeneration.

Funding information:
  • NINDS NIH HHS - 1F31NS084706-01(United States)

Reactive astrogliosis causes the development of spontaneous seizures.

  • Robel S
  • J. Neurosci.
  • 2015 Feb 25

Literature context: 1000), rabbit anti-GFAP (Dako, #Z0334; 1:1000), chicken anti-GFAP (Mi


Abstract:

Epilepsy is one of the most common chronic neurologic diseases, yet approximately one-third of affected patients do not respond to anticonvulsive drugs that target neurons or neuronal circuits. Reactive astrocytes are commonly found in putative epileptic foci and have been hypothesized to be disease contributors because they lose essential homeostatic capabilities. However, since brain pathology induces astrocytes to become reactive, it is difficult to distinguish whether astrogliosis is a cause or a consequence of epileptogenesis. We now present a mouse model of genetically induced, widespread chronic astrogliosis after conditional deletion of β1-integrin (Itgβ1). In these mice, astrogliosis occurs in the absence of other pathologies and without BBB breach or significant inflammation. Electroencephalography with simultaneous video recording revealed that these mice develop spontaneous seizures during the first six postnatal weeks of life and brain slices show neuronal hyperexcitability. This was not observed in mice with neuronal-targeted β1-integrin deletion, supporting the hypothesis that astrogliosis is sufficient to induce epileptic seizures. Whole-cell patch-clamp recordings from astrocytes further suggest that the heightened excitability was associated with impaired astrocytic glutamate uptake. Moreover, the relative expression of the cation-chloride cotransporters (CCC) NKCC1 (Slc12a2) and KCC2 (Slc12a5), which are responsible for establishing the neuronal Cl(-) gradient that governs GABAergic inhibition were altered and the NKCC1 inhibitor bumetanide eliminated seizures in a subgroup of mice. These data suggest that a shift in the relative expression of neuronal NKCC1 and KCC2, similar to that observed in immature neurons during development, may contribute to astrogliosis-associated seizures.

Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations.

  • Forrest SL
  • J. Comp. Neurol.
  • 2014 Dec 1

Literature context: GFAP) polyclonal antibody (RRID:AB_10013382; Batch No. 072(102)) cross-reac


Abstract:

Artemin is a member of the glial cell line-derived neurotrophic factor (GDNF) family that has been strongly implicated in development and regeneration of autonomic nerves and modulation of nociception. Whereas other members of this family (GDNF and neurturin) primarily target parasympathetic and nonpeptidergic sensory neurons, the artemin receptor (GFRα3) is expressed by sympathetic and peptidergic sensory neurons that are also the primary sites of action of nerve growth factor, a powerful modulator of bladder nerves. Many bladder sensory neurons express GFRα3 but it is not known if they represent a specific functional subclass. Therefore, our initial aim was to map the distribution of GFRα3-immunoreactive (-IR) axons in the female rat bladder, using cryostat sections and whole wall thickness preparations. We found that GFRα3-IR axons innervated the detrusor, vasculature, and urothelium, but only part of this innervation was sensory. Many noradrenergic sympathetic axons innervating the vasculature were GFRα3-IR, but the noradrenergic innervation of the detrusor was GFRα3-negative. We also identified a prominent source of nonneuronal GFRα3-IR that is likely to be glial. Further characterization of bladder nerves revealed specific structural features of chemically distinct classes of axon terminals, and a major autonomic source of axons labeled with neurofilament-200, which is commonly used to identify myelinated sensory axons within organs. Intramural neurons were also characterized and quantified. Together, these studies reveal a diverse range of potential targets by which artemin could influence bladder function, nerve regeneration, and pain, and provide a strong microanatomical framework for understanding bladder physiology and pathophysiology.

Distribution of microsomal prostaglandin E synthase-1 in the mouse brain.

  • Eskilsson A
  • J. Comp. Neurol.
  • 2014 Oct 1

Literature context: o. Z0334; RRID:AB_10013382) is used a


Abstract:

Previous studies in rats have demonstrated that microsomal prostaglandin E synthase-1 (mPGES-1) is induced in brain vascular cells that also express inducible cyclooxygenase-2, suggesting that such cells are the source of the increased PGE2 levels that are seen in the brain following peripheral immune stimulation, and that are associated with sickness responses such as fever, anorexia, and stress hormone release. However, while most of what is known about the functional role of mPGES-1 for these centrally evoked symptoms is based on studies on genetically modified mice, the cellular localization of mPGES-1 in the mouse brain has not been thoroughly determined. Here, using a newly developed antibody that specifically recognizes mouse mPGES-1 and dual-labeling for cell-specific markers, we report that mPGES-1 is constitutively expressed in the mouse brain, being present not only in brain endothelial cells, but also in several other cell types and structures, such as capillary-associated pericytes, astroglial cells, leptomeninges, and the choroid plexus. Regional differences were seen with particularly prominent labeling in autonomic relay structures such as the area postrema, the subfornical organ, the paraventricular hypothalamic nucleus, the arcuate nucleus, and the preoptic area. Following immune stimulation, mPGES-1 in brain endothelial cells, but not in other mPGES-1-positive cells, was coexpressed with cyclooxygenase-2, whereas there was no coexpression between mPGES-1 and cyclooxygenase-1. These data imply a widespread synthesis of PGE2 or other mPGES-1-dependent products in the mouse brain that may be related to inflammation-induced sickness symptom as well as other functions, such as blood flow regulation.

Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates.

  • Forny-Germano L
  • J. Neurosci.
  • 2014 Oct 8

Literature context: og #Z0334 RRID:AB_10013382), and IBA-


Abstract:

Alzheimer's disease (AD) is a devastating neurodegenerative disorder and a major medical problem. Here, we have investigated the impact of amyloid-β (Aβ) oligomers, AD-related neurotoxins, in the brains of rats and adult nonhuman primates (cynomolgus macaques). Soluble Aβ oligomers are known to accumulate in the brains of AD patients and correlate with disease-associated cognitive dysfunction. When injected into the lateral ventricle of rats and macaques, Aβ oligomers diffused into the brain and accumulated in several regions associated with memory and cognitive functions. Cardinal features of AD pathology, including synapse loss, tau hyperphosphorylation, astrocyte and microglial activation, were observed in regions of the macaque brain where Aβ oligomers were abundantly detected. Most importantly, oligomer injections induced AD-type neurofibrillary tangle formation in the macaque brain. These outcomes were specifically associated with Aβ oligomers, as fibrillar amyloid deposits were not detected in oligomer-injected brains. Human and macaque brains share significant similarities in terms of overall architecture and functional networks. Thus, generation of a macaque model of AD that links Aβ oligomers to tau and synaptic pathology has the potential to greatly advance our understanding of mechanisms centrally implicated in AD pathogenesis. Furthermore, development of disease-modifying therapeutics for AD has been hampered by the difficulty in translating therapies that work in rodents to humans. This new approach may be a highly relevant nonhuman primate model for testing therapeutic interventions for AD.

Funding information:
  • NEI NIH HHS - EY13879(United States)

Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration.

  • Ribeiro-Resende VT
  • PLoS ONE
  • 2014 Oct 21

Literature context: t# Z0334, RRID:AB_10013382) was perfo


Abstract:

The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration.

Funding information:
  • European Research Council - 261063(International)

Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage.

  • Garbuzova-Davis S
  • J. Comp. Neurol.
  • 2014 Sep 1

Literature context: ry antibody (1:500; catalog No. Z0334; Dako, Glostrup, Denmark). This


Abstract:

Stroke is a life-threatening disease leading to long-term disability in stroke survivors. Cerebral functional insufficiency in chronic stroke might be due to pathological changes in brain areas remote from the initial ischemic lesion, i.e., diaschisis. Previously, we showed that the damaged blood-brain barrier (BBB) was involved in subacute diaschisis. The present study investigated BBB competence in chronic diaschisis by using a transient middle cerebral artery occlusion (tMCAO) rat model. Our results demonstrated significant BBB damage mostly in the ipsilateral striatum and motor cortex in rats at 30 days after tMCAO. The BBB alterations were also determined in the contralateral hemisphere via ultrastructural and immunohistochemical analyses. Major BBB pathological changes in contralateral remote striatum and motor cortex areas included 1) vacuolated endothelial cells containing large autophagosomes, 2) degenerated pericytes displaying mitochondria with cristae disruption, 3) degenerated astrocytes and perivascular edema, 4) Evans blue extravasation, and 5) appearance of parenchymal astrogliosis. Discrete analyses of striatal and motor cortex areas revealed significantly higher autophagosome accumulation in capillaries of ventral striatum and astrogliosis in dorsal striatum in both cerebral hemispheres. These widespread microvascular alterations in ipsilateral and contralateral brain hemispheres suggest persistent and/or continued BBB damage in chronic ischemia. The pathological changes in remote brain areas likely indicate chronic ischemic diaschisis, which should be considered in the development of treatment strategies for stroke.

Ear2 deletion causes early memory and learning deficits in APP/PS1 mice.

  • Kummer MP
  • J. Neurosci.
  • 2014 Jun 25

Literature context: og #Z0334 RRID:AB_10013382, 1:800; Da


Abstract:

To assess the consequences of locus ceruleus (LC) degeneration and subsequent noradrenaline (NA) deficiency in early Alzheimer's disease (AD), mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were crossed with Ear2(-/-) mice that have a severe loss of LC neurons projecting to the hippocampus and neocortex. Testing spatial memory and hippocampal long-term potentiation revealed an impairment in APP/PS1 Ear2(-/-) mice, whereas APP/PS1 or Ear2(-/-) mice showed only minor changes. These deficits were associated with distinct synaptic changes including reduced expression of the NMDA 2A subunit and increased levels of NMDA receptor 2B in APP/PS1 Ear2(-/-) mice. Acute pharmacological replacement of NA by L-threo-DOPS partially restored phosphorylation of β-CaMKII and spatial memory performance in APP/PS1 Ear2(-/-) mice. These changes were not accompanied by altered APP processing or amyloid β peptide (Aβ) deposition. Thus, early LC degeneration and subsequent NA reduction may contribute to cognitive deficits via CaMKII and NMDA receptor dysfunction independent of Aβ and suggests that NA supplementation could be beneficial in treating AD.

NFκB signaling is essential for the lipopolysaccharide-induced increase of type 2 deiodinase in tanycytes.

  • de Vries EM
  • Endocrinology
  • 2014 May 21

Literature context:


Abstract:

The enzyme type 2 deiodinase (D2) is a major determinant of T₃ production in the central nervous system. It is highly expressed in tanycytes, a specialized cell type lining the wall of the third ventricle. During acute inflammation, the expression of D2 in tanycytes is up-regulated by a mechanism that is poorly understood at present, but we hypothesized that cJun N-terminal kinase 1 (JNK1) and v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) (the 65 kD subunit of NFκB) inflammatory signal transduction pathways are involved. In a mouse model for acute inflammation, we studied the effects of lipopolysaccharide (LPS) on mRNA expression of D2, JNK1, and RelA in the periventricular area (PE) and the arcuate nucleus-median eminence of the hypothalamus. We next investigated LPS-induced D2 expression in primary tanycyte cell cultures. In the PE, the expression of D2 was increased by LPS. In the arcuate nucleus, but not in the PE, we found increased RelA mRNA expression. Likewise, LPS increased D2 and RelA mRNA expression in primary tanycyte cell cultures, whereas JNK1 mRNA expression did not change. Phosphorylation of RelA and JNK1 was increased in tanycyte cell cultures 15-60 minutes after LPS stimulation, confirming activation of these pathways. Finally, inhibition of RelA with the chemical inhibitors sulfasalazine and 4-Methyl-N¹-(3-phenylpropyl)benzene-1,2-diamine (JSH-23) in tanycyte cell cultures prevented the LPS-induced D2 increase. We conclude that NFκB signaling is essential for the up-regulation of D2 in tanycytes during inflammation.

Funding information:
  • Canadian Institutes of Health Research - (Canada)
  • NIAID NIH HHS - HHSN272200900047C(United States)

Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla).

  • Perez SE
  • J. Comp. Neurol.
  • 2013 Dec 15

Literature context:


Abstract:

The two major histopathologic hallmarks of Alzheimer's disease (AD) are amyloid beta protein (Aβ) plaques and neurofibrillary tangles (NFT). Aβ pathology is a common feature in the aged nonhuman primate brain, whereas NFT are found almost exclusively in humans. Few studies have examined AD-related pathology in great apes, which are the closest phylogenetic relatives of humans. In the present study, we examined Aβ and tau-like lesions in the neocortex and hippocampus of aged male and female western lowland gorillas using immunohistochemistry and histochemistry. Analysis revealed an age-related increase in Aβ-immunoreactive plaques and vasculature in the gorilla brain. Aβ plaques were more abundant in the neocortex and hippocampus of females, whereas Aβ-positive blood vessels were more widespread in male gorillas. Plaques were also Aβ40-, Aβ42-, and Aβ oligomer-immunoreactive, but only weakly thioflavine S- or 6-CN-PiB-positive in both sexes, indicative of the less fibrillar (diffuse) nature of Aβ plaques in gorillas. Although phosphorylated neurofilament immunostaining revealed a few dystrophic neurites and neurons, choline acetyltransferase-immunoreactive fibers were not dystrophic. Neurons stained for the tau marker Alz50 were found in the neocortex and hippocampus of gorillas at all ages. Occasional Alz50-, MC1-, and AT8-immunoreactive astrocyte and oligodendrocyte coiled bodies and neuritic clusters were seen in the neocortex and hippocampus of the oldest gorillas. This study demonstrates the spontaneous presence of both Aβ plaques and tau-like lesions in the neocortex and hippocampus in old male and female western lowland gorillas, placing this species at relevance in the context of AD research.

Funding information:
  • NCI NIH HHS - U01 CA168394(United States)

Upregulation of insulin-like growth factor and interleukin 1β occurs in neurons but not in glial cells in the cochlear nucleus following cochlear ablation.

  • Fuentes-Santamaría V
  • J. Comp. Neurol.
  • 2013 Oct 15

Literature context:


Abstract:

One of the main mechanisms used by neurons and glial cells to promote repair following brain injury is to upregulate activity-dependent molecules such as insulin-like growth factor 1 (IGF-1) and interleukin-1β (IL-1β). In the auditory system, IGF-1 is crucial for restoring synaptic transmission following hearing loss; however, whether IL-1β is also involved in this process is unknown. In this study, we evaluated the expression of IGF-1 and IL-1β within neurons and glial cells of the ventral cochlear nucleus in adult rats at 1, 7, 15, and 30 days following bilateral cochlear ablation. After the lesion, significant increases in both the overall mean gray levels of IGF-1 immunostaining and the mean gray levels within cells of the cochlear nucleus were observed at 1, 7, and 15 days compared with control animals. The expression and distribution of IL-1β in the ventral cochlear nucleus of ablated animals was temporally and spatially correlated with IGF-1. We also observed a lack of colocalization between IGF-1 and IL-1β with either astrocytes or microglia at any of the time points following ablation. These results suggest that the upregulation of IGF-1 and IL-1β levels within neurons-but not within glial cells-may reflect a plastic mechanism involved in repairing synaptic homeostasis of the overall cellular environment of the cochlear nucleus following bilateral cochlear ablation.

Funding information:
  • Canadian Institutes of Health Research - FRN 12594(Canada)
  • Cancer Research UK - 15310(United Kingdom)

Wild-type neural progenitors divide and differentiate normally in an amyloid-rich environment.

  • Yetman MJ
  • J. Neurosci.
  • 2013 Oct 30

Literature context: primary antibody (1:500, Dako, Z0334) overnight at 4°C, followed by


Abstract:

Adult neurogenesis is modulated by a balance of extrinsic signals and intrinsic responses that maintain production of new granule cells in the hippocampus. Disorders that disrupt the proliferative niche can impair this process, and alterations in adult neurogenesis have been described in human autopsy tissue and transgenic mouse models of Alzheimer's disease. Because exogenous application of aggregated Aβ peptide is neurotoxic in vitro and extracellular Aβ deposits are the main pathological feature recapitulated by mouse models, cell-extrinsic effects of Aβ accumulation were thought to underlie the breakdown of hippocampal neurogenesis observed in Alzheimer's models. We tested this hypothesis using a bigenic mouse in which transgenic expression of APP was restricted to mature projection neurons. These mice allowed us to examine how wild-type neural progenitor cells responded to high levels of Aβ released from neighboring granule neurons. We find that the proliferation, determination, and survival of hippocampal adult-born granule neurons are unaffected in the APP bigenic mice, despite abundant amyloid pathology and robust neuroinflammation. Our findings suggest that Aβ accumulation is insufficient to impair adult hippocampal neurogenesis, and that factors other than amyloid pathology may account for the neurogenic deficits observed in transgenic models with more widespread APP expression.

Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain.

  • Langlet F
  • J. Comp. Neurol.
  • 2013 Oct 15

Literature context:


Abstract:

Tanycytes are highly specialized ependymal cells that form a blood-cerebrospinal fluid (CSF) barrier at the level of the median eminence (ME), a circumventricular organ (CVO) located in the tuberal region of the hypothalamus. This ependymal layer harbors well-organized tight junctions, a hallmark of central nervous system barriers that is lacking in the fenestrated portal vessels of the ME. The displacement of barrier properties from the vascular to the ventricular side allows the diffusion of blood-borne molecules into the parenchyma of the ME while tanycyte tight junctions control their diffusion into the CSF, thus maintaining brain homeostasis. In the present work, we combined immunohistochemical and permeability studies to investigate the presence of tanycyte barriers along the ventricular walls of other brain CVOs. Our data indicate that, unlike cuboidal ependymal cells, ependymal cells bordering the CVOs possess long processes that project into the parenchyma of the CVOs to reach the fenestrated capillary network. Remarkably, these tanycyte-like cells display well-organized tight junctions around their cell bodies. Consistent with these observations, permeability studies show that this ependymal layer acts as a diffusion barrier. Together, our results suggest that tanycytes are a characteristic feature of all CVOs and yield potential new insights into their involvement in regulating the exchange between the blood, the brain, and the CSF within these "brain windows."

Funding information:
  • NINDS NIH HHS - R01 NS039600(United States)

Age increase of estrogen receptor-α (ERα) in cortical astrocytes impairs neurotrophic support in male and female rats.

  • Arimoto JM
  • Endocrinology
  • 2013 Jun 20

Literature context:


Abstract:

Rodent models show decreased neuronal responses to estradiol (E2) during aging (E2-desensitization) in association with reduced neuronal estrogen receptor (ER)-α, but little is known about age changes of E2-dependent astrocytic neurotrophic support. Because elevated expression of astrocyte glial fibrillary acidic protein (GFAP) is associated with impaired neurotrophic activity and because the GFAP promoter responds to ERα, we investigated the role of astrocytic ERα and ERβ in impaired astrocyte neurotrophic activity during aging. In vivo and in vitro, ERα was increased greater than 50% with age in astrocytes from the cerebral cortex of male rats (24 vs 3 months), whereas ERβ did not change. In astrocytes from 3-month-old males, experimentally increasing the ERα to ERβ ratio induced the aging phenotype of elevated GFAP and impaired E2-dependent neurite outgrowth. In 24-month-old male astrocytes, lowering ERα reversed the age elevation of GFAP and partially restored E2-dependent neurite outgrowth. Mixed glia (astrocytes to microglia, 3:1) of both sexes also showed these age changes. In a model of perimenopause, mixed glia from 9- to 15-month rats showed E2 desensitization: 9-month regular cyclers retained young-like ERα to ERβ ratios and neurotrophic activity, whereas 9-month noncyclers had elevated ERα and GFAP but low E2-dependent neurotrophic activity. In vivo, ERα levels in cortical astrocytes were also elevated. The persisting effects of ovarian acyclicity in vitro are hypothesized to arise from steroidal perturbations during ovarian senescence. These findings suggest that increased astrocyte ERα expression during aging contributes to the E2 desensitization of the neuronal responses in both sexes.

Funding information:
  • NIDCD NIH HHS - R01 DC014728(United States)

Cellular components of the human medial amygdaloid nucleus.

  • Dall'Oglio A
  • J. Comp. Neurol.
  • 2013 Feb 15

Literature context:


Abstract:

The medial nucleus (Me) is a superficial component of the amygdaloid complex. Here we assessed the density and morphology of the neurons and glial cells, the glial fibrillary acidic protein (GFAP) immunoreactivity, and the ultrastructure of the synaptic sites in the human Me. The optical fractionator method was applied. The Me presented an estimated mean neuronal density of 1.53 × 10⁵ neurons/mm³ (greater in the left hemisphere), more glia (72% of all cells) than neurons, and a nonneuronal:neuronal ratio of 2.7. Golgi-impregnated neurons had round or ovoid, fusiform, angular, and polygonal cell bodies (10-30 μm in diameter). The length of the dendrites varied, and pleomorphic spines were found in sparsely spiny or densely spiny cells (1.5-5.2 spines/dendritic μm). The axons in the Me neuropil were fine or coarsely beaded, and fibers showed simple or notably complex collateral terminations. The protoplasmic astrocytes were either isolated or formed small clusters and showed GFAP-immunoreactive cell bodies and multiple branches. Furthermore, we identified both asymmetrical (with various small, clear, round, electron-lucent vesicles and, occasionally, large, dense-core vesicles) and symmetrical (with small, flattened vesicles) axodendritic contacts, also including multisynaptic spines. The astrocytes surround and may compose tripartite or tetrapartite synapses, the latter including the extracellular matrix between the pre- and the postsynaptic elements. Interestingly, the terminal axons exhibited a glomerular-like structure with various asymmetrical contacts. These new morphological data on the cellular population and synaptic complexity of the human Me can contribute to our knowledge of its role in health and pathological conditions.

Funding information:
  • NIGMS NIH HHS - 1P50GM071558-01A27398(United States)

Dynamics of olfactory and hippocampal neurogenesis in adult sheep.

  • Brus M
  • J. Comp. Neurol.
  • 2013 Jan 1

Literature context:


Abstract:

Although adult neurogenesis has been conserved in higher vertebrates such as primates and humans, timing of generation, migration, and differentiation of new neurons appears to differ from that in rodents. Sheep could represent an alternative model to studying neurogenesis in primates because they possess a brain as large as a macaque monkey and have a similar life span. By using a marker of cell division, bromodeoxyuridine (BrdU), in combination with several markers, the maturation time of newborn cells in the dentate gyrus (DG) and the main olfactory bulb (MOB) was determined in sheep. In addition, to establish the origin of adult-born neurons in the MOB, an adeno-associated virus that infects neural cells in the ovine brain was injected into the subventricular zone (SVZ). A migratory stream was indicated from the SVZ up to the MOB, consisting of neuroblasts that formed chain-like structures. Results also showed a long neuronal maturation time in both the DG and the MOB, similar to that in primates. The first new neurons were observed at 1 month in the DG and at 3 months in the MOB after BrdU injections. Thus, maturation of adult-born cells in both the DG and the MOB is much longer than that in rodents and resembles that in nonhuman primates. This study points out the importance of studying the features of adult neurogenesis in models other than rodents, especially for translational research for human cellular therapy.

Funding information:
  • NIMH NIH HHS - R21 MH083614(United States)

A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord.

  • Garcia-Ovejero D
  • J. Comp. Neurol.
  • 2013 Jan 1

Literature context:


Abstract:

The cells surrounding the central canal of the spinal cord are a source of stem/precursor cells that may give rise to neurons, astrocytes, or oligodendrocytes. However, they are a heterogeneous population that remains poorly understood. Here we describe a subpopulation characterized by their strong expression of the CB(1) cannabinoid receptor, oval/round soma, apical nucleus, a variable number of cilia (0, 1, or 2), and the presence of a single short and occasionally ramified basal process. These cells are mainly located in the lateral and dorsal central canal throughout the spinal cord. These CB(1)(HIGH) cells are closely related to the basal lamina labyrinths or fractones derived from subependymal microglia. In addition, CB(1)(HIGH) cells express some stem/precursor cell markers, including vimentin, nestin, Sox2, Sox9, and GLAST, but not others such as CD15 or GFAP. In addition, this cell population does not proliferate in the intact adult spinal cord, although up to 50% of these cells express the proliferation marker Ki67 in newly born rats or after a spinal cord contusion. The present findings contribute to our understanding of the spinal cord central canal structure and reveal the targets for endocannabinoids inside this neurogenic niche.

Funding information:
  • Howard Hughes Medical Institute - NS072360(United States)
  • NIGMS NIH HHS - GM068118(United States)

Birth of neural progenitors during the embryonic period of sexual differentiation in the Japanese quail brain.

  • Bardet SM
  • J. Comp. Neurol.
  • 2012 Dec 15

Literature context:


Abstract:

Several brain areas in the diencephalon are involved in the activation and expression of sexual behavior, including in quail the medial preoptic nucleus (POM). However, the ontogeny of these diencephalic brain nuclei has not to this date been examined in detail. We investigated the ontogeny of POM and other steroid-sensitive brain regions by injecting quail eggs with 5-bromo-2-deoxyuridine (BrdU) at various stages between embryonic day (E)3 and E16 and killing animals at postnatal (PN) days 3 or 56. In the POM, large numbers of BrdU-positive cells were observed in subjects injected from E3-E10, the numbers of these cells was intermediate in birds injected on E12, and most cells were postmitotic in both sexes on E14-E16. Injections on E3-E4 labeled large numbers of Hu-positive cells in POM. In contrast, injections performed at a later stage labeled cells that do not express aromatase nor neuronal markers such as Hu or NeuN in the POM and other steroid-sensitive nuclei and thus do not have a neuronal phenotype in these locations, contrary to what is observed in the telencephalon and cerebellum. No evidence could also be collected to demonstrate that these cells have a glial nature. Converging data, including the facts that these cells divide in the brain mantle and express proliferating cell nuclear antigen (PCNA), a cell cycling marker, indicate that cells labeled by BrdU during the second half of embryonic life are slow-cycling progenitors born and residing in the brain mantle. Future research should now identify their functional significance.

Funding information:
  • Howard Hughes Medical Institute - (United States)

Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice.

  • Yi JH
  • J. Comp. Neurol.
  • 2012 Oct 15

Literature context:


Abstract:

Chondroitin sulfate proteoglycans (CSPGs) play a pivotal role in many neuronal growth mechanisms including axon guidance and the modulation of repair processes following injury to the spinal cord or brain. Many actions of CSPGs in the central nervous system (CNS) are governed by the specific sulfation pattern on the glycosaminoglycan (GAG) chains attached to CSPG core proteins. To elucidate the role of CSPGs and sulfated GAG chains following traumatic brain injury (TBI), controlled cortical impact injury of mild to moderate severity was performed over the left sensory motor cortex in mice. Using immunoblotting and immunostaining, we found that TBI resulted in an increase in the CSPGs neurocan and NG2 expression in a tight band surrounding the injury core, which overlapped with the presence of 4-sulfated CS GAGs but not with 6-sulfated GAGs. This increase was observed as early as 7 days post injury (dpi), and persisted for up to 28 dpi. Labeling with markers against microglia/macrophages, NG2+ cells, fibroblasts, and astrocytes showed that these cells were all localized in the area, suggesting multiple origins of chondroitin-4-sulfate increase. TBI also caused a decrease in the expression of aggrecan and phosphacan in the pericontusional cortex with a concomitant reduction in the number of perineuronal nets. In summary, we describe a dual response in CSPGs whereby they may be actively involved in complex repair processes following TBI.

Funding information:
  • NIH HHS - R24 OD010435(United States)

Biciliated ependymal cell proliferation contributes to spinal cord growth.

  • Alfaro-Cervello C
  • J. Comp. Neurol.
  • 2012 Oct 15

Literature context:


Abstract:

Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [(3) H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+, and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from those of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord.

Funding information:
  • Canadian Institutes of Health Research - FRN15686(Canada)

The immune inhibitory complex CD200/CD200R is developmentally regulated in the mouse brain.

  • Shrivastava K
  • J. Comp. Neurol.
  • 2012 Aug 15

Literature context:


Abstract:

The CD200/CD200R inhibitory immune ligand-receptor system regulates microglial activation/quiescence in adult brain. Here, we investigated CD200/CD200R at different stages of postnatal development, when microglial maturation takes place. We characterized the spatiotemporal, cellular, and quantitative expression pattern of CD200 and CD200R in the developing and adult C57/BL6 mice brain by immunofluorescent labeling and Western blotting. CD200 expression increased from postnatal day 1 (P1) to P5-P7, when maximum levels were found, and decreased to adulthood. CD200 was located surrounding neuronal bodies, and very prominently in cortical layer I, where CD200(+) structures included glial fibrillary acidic protein (GFAP)(+) astrocytes until P7. In the hippocampus, CD200 was mainly observed in the hippocampal fissure, where GFAP(+) /CD200(+) astrocytes were also found until P7. CD200(+) endothelium was seen in the hippocampal fissure and cortical blood vessels, notably from P14, showing maximum vascular CD200 in adults. CD200R(+) cells were a population of ameboid/pseudopodic Iba1(+) microglia/macrophages observed at all ages, but significantly decreasing with increasing age. CD200R(+) /Iba1(+) macrophages were prominent in the pial meninges and ventricle lining, mainly at P1-P5. CD200R(+) /Iba1(+) perivascular macrophages were observed in cortical and hippocampal fissure blood vessels, showing maximum density at P7, but being prominent until adulthood. CD200R(+) /Iba1(+) ameboid microglia in the cingulum at P1-P5 were the only CD200R(+) cells in the nervous tissue. In conclusion, the main sites of CD200/CD200R interaction seem to include the molecular layer and pial surface in neonates and blood vessels from P7 until adulthood, highlighting the possible role of the CD200/CD200R system in microglial development and renewal.

Funding information:
  • NIMH NIH HHS - R01 MH084812(United States)
  • NINDS NIH HHS - R01 NS045744-04(United States)

Postinjury administration of 17β-estradiol induces protection in the gray and white matter with associated functional recovery after cervical spinal cord injury in male rats.

  • Siriphorn A
  • J. Comp. Neurol.
  • 2012 Aug 15

Literature context:


Abstract:

The majority of spinal cord injuries (SCIs) in the clinic occur at the lower cervical levels, resulting in both white and gray matter disruption. In contrast, most experimental models of SCI in rodents induce damage in the thoracic cord, resulting primarily in white matter disruption. To address this disparity, experimental cervical SCI models have been developed. Thus, we used a recently characterized model of cervical hemicontusion SCI in adult male rats to assess the potential therapeutic effect of post-SCI administration of 17β-estradiol. Rats received a hemicontusion at the level of the fifth cervical vertebra (C5) followed by administration of 17β-estradiol via a slow release pellet (0.5 or 5.0 mg/pellet) beginning at 30 minutes post-SCI. Behavioral evaluation of skilled and unskilled forelimb function and locomotor function were conducted for 7 weeks after SCI. Upon conclusion of the behavioral assessments, spinal cords were collected and histochemistry and stereology were conducted to evaluate the effect of treatment on the lesion characteristics. We found that post-SCI administration of 17β-estradiol decreased neuronal loss in the ventral horn, decreased reactive astrogliosis, decreased the immune response, and increased white mater sparing at the lesion epicenter. Additionally, post-SCI administration of 17β-estradiol improved skilled forelimb function and locomotor function. Taken together, these data suggest that post-SCI administration of 17β-estradiol protected both the gray and white matter in cervical SCI. Moreover, this treatment improved function on skilled motor tasks that involve both gray and white matter components, suggesting that this is likely a highly clinically relevant protective strategy.

Funding information:
  • NIDCR NIH HHS - F31 DE022237(United States)

Localization of endogenous morphine-like compounds in the mouse spinal cord.

  • Laux A
  • J. Comp. Neurol.
  • 2012 May 1

Literature context:


Abstract:

Morphine, codeine, morphine-6-glucuronide, and morphine-3-glucuronide are synthesized de novo in mammalian cells and in the central nervous system. Knowledge on endogenous morphine-like compound distribution in the adult mouse brain has been recently improved, and new hypotheses have been suggested about the potential implications in brain physiology. Endogenous morphine-like compounds have been shown to be synthesized in the spinal cord, but their localization is unknown. Here we describe the distribution of endogenous morphine-like compounds (morphine and/or its glucuronides and/or codeine) in the adult mouse spinal cord using a well-validated antibody. By using different microscopy approaches, we found the presence of morphine, codeine, or morphine glucuronides in γ-aminobutyric acid (GABA)-ergic neurons and astrocytes of the spinal cord. Whereas GABAergic neurons containing endogenous morphine-like compounds were located primarily in the ventral horn, astrocytes that were labeled for morphine-like compounds were found throughout the gray matter and the white matter. Our study demonstrates the possibility that endogenous morphine-like compounds in the central nervous system have other functions beyond their analgesic functions.

Funding information:
  • Intramural NIH HHS - ZIA ES102805(United States)

Morphologic and immunohistochemical organization of the human habenular complex.

  • Díaz E
  • J. Comp. Neurol.
  • 2011 Dec 15

Literature context:


Abstract:

The habenular complex (HbCpx) is a phylogenetically conserved brain structure located in the epithalamus of vertebrates. Despite its fundamental role in decision-making processes and the proposed link between habenular dysfunction and neuropsychiatric conditions, little is known about the structural and functional organization of the HbCpx in humans. The goal of this study was thus to provide a first systematic morphologic and immunohistochemical analysis of the human HbCpx to begin dissecting its nuclear and subnuclear organization. Our results confirmed that the human HbCpx is subdivided into medial (MHb) and lateral (LHb) nuclei, each showing a large degree of intranuclear morphologic heterogeneity. Analysis of serially stained sections using a combination of morphologic and immunohistochemical criteria allowed the distinction of five subnuclei in both the MHb and LHb. Overall, the observed subnuclear organization of the MHb in humans resembles the organization of subnuclei in the MHb of rats. The shape, relative size, and intranuclear organization of the LHb, however, show significant differences. The contribution of the LHb to the entire HbCpx is about five times larger in humans than in rats. Noteworthy, a dorsal domain of the LHb that contains afferent myelinated fibers from the stria medullaris and shows GABA-(B) -R(1) immunoreactive cells, appears substantially enlarged in humans when compared to rats. This feature seems to account for a large part of the relative growth in size of the LHb in humans and opens the intriguing possibility of an increased influence of limbic and striatal afferents into the LHb of humans.

Funding information:
  • NCI NIH HHS - P01CA24014(United States)

Nuclear factor one X regulates the development of multiple cellular populations in the postnatal cerebellum.

  • Piper M
  • J. Comp. Neurol.
  • 2011 Dec 1

Literature context:


Abstract:

Development of the cerebellum involves the coordinated proliferation, differentiation, maturation, and integration of cells from multiple neuronal and glial lineages. In rodent models, much of this occurs in the early postnatal period. However, our understanding of the molecular mechanisms that regulate this phase of cerebellar development remains incomplete. Here, we address the role of the transcription factor nuclear factor one X (NFIX), in postnatal development of the cerebellum. NFIX is expressed by progenitor cells within the external granular layer and by cerebellar granule neurons within the internal granule layer. Using NFIX⁻/⁻ mice, we demonstrate that the development of cerebellar granule neurons and Purkinje cells within the postnatal cerebellum is delayed in the absence of this transcription factor. Furthermore, the differentiation of mature glia within the cerebellum, such as Bergmann glia, is also significantly delayed in the absence of NFIX. Collectively, the expression pattern of NFIX, coupled with the delays in the differentiation of multiple cell populations of the developing cerebellum in NFIX⁻/⁻ mice, suggest a central role for NFIX in the regulation of cerebellar development, highlighting the importance of this gene for the maturation of this key structure.

Funding information:
  • NIGMS NIH HHS - R01 GM101457(United States)

Blueprint of an ancestral neurosensory organ revealed in glial networks in human dental pulp.

  • Farahani RM
  • J. Comp. Neurol.
  • 2011 Nov 1

Literature context:


Abstract:

Sensory function of human dental pulp has long been known. A composite role has been suggested for odontoblasts as sensory cells in addition to the synthesis of dentinal matrix. However, the neural basis for such a composite sensory activity remains enigmatic. Here, we aimed to probe the question by pursuing an evolutionary logic; if dental pulp is a vestigial sensory organ co-opted to a function of synthesis of mineralized matrix, essential elements of neurosensory organs may persist in dental pulp. Through structural analysis by confocal laser scanning microscopy, three distinct cell populations adjacent to odontoblasts, glial fibrillary acidic protein (GFAP)(+) seracytes, S100(+) telacytes, and HLA-II(+) alacytes were identified in peripheral human dental pulp. Subsequent molecular fingerprinting by quantitative reverse transcriptase-polymerase chain reaction established these cells as analogous to radial glia (GFAP(+) cells), astrocytes (S100(+) cells), and microglia (HLA-II(+) cells) of central nervous system organs. In the cell-rich zone of the pulp, S100(+) cells formed a network, ensheathed unmyelinated axons, and extended end-feet around the capillaries. The microcirculation adjacent to the glial cells in the cell-rich zone possessed ultrastructural features and a gene expression profile typical of the blood-brain barrier system. These novel findings support a new paradigm for understanding sensory functionality of dental pulp by the demonstration of a sophisticated neural structure in the human dental pulp that is analogous to other central sensory organs. Further, the structure that is revealed informs the concept of the evolutionary origin of the dental pulp, suggesting that a neurosensory organ was the precursor structure of teeth.

Funding information:
  • NCRR NIH HHS - R01RR025030(United States)

Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in Dark Agouti rat.

  • Adori C
  • J. Comp. Neurol.
  • 2011 Aug 15

Literature context:


Abstract:

3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is a popular party drug known to cause selective serotonergic damage. Here we examined the long-term recovery and aging of serotonergic fibers and levels of brain-derived neurotrophic factor (BDNF) after intermittent MDMA administration (15 mg kg(-1) i.p. every 7th day for 4 weeks, MDMA ×4) and a single-dose treatment (15 mg kg(-1) i.p., MDMA ×1) in adolescent/young adult male Dark Agouti rats. After MDMA treatment, tryptophan hydroxylase-immunoreactive fiber density decreased and then recovered in all brain regions. Recovery was more pronounced in the MDMA ×4 group compared with the MDMA ×1 group, but similar long-term BDNF responses were found after both treatments. Twenty-two months after treatment, there were fewer clusters of aberrant serotonergic fibers in the parietal cortex in the MDMA ×4 group compared with the MDMA ×1 group. There was no difference in the density of microglial cells or astrocytes in treated groups versus the control 22 months after the treatments. These results indicate that recovery of serotonergic fibers is faster after intermittent MDMA treatment than after single-dose administration, and differences in BDNF levels per se are unlikely to account for this difference. Moreover, it seems that intermittent MDMA treatment attenuates the morphological signs of aging in serotonergic fibers. In addition, neither intermittent nor single-dose MDMA exposition of young animals induces accelerated aging processes or neurodegeneration in senescence, as indicated by the unaltered densities of microglial cells and astrocytes in the treated groups compared with the control.

Funding information:
  • NHGRI NIH HHS - R01-HG02729-01(United States)

Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells.

  • Laux A
  • J. Comp. Neurol.
  • 2011 Aug 15

Literature context:


Abstract:

Endogenous morphine, morphine-6-glucuronide, and codeine, which are structurally identical to vegetal alkaloids, can be synthesized by mammalian cells from dopamine. However, the role of brain endogenous morphine and its derivative compounds is a matter of debate, and knowledge about its distribution is lacking. In this study, by using a validated antibody, we describe a precise mapping of endogenous morphine-like compounds (morphine and/or its glucuronides and/or codeine) in the mouse brain. First, a mass spectrometry approach confirmed the presence of morphine and codeine in mouse brain, but also, of morphine-6-glucuronide and morphine-3-glucuronide representing two metabolites of morphine. Second, light microscopy allowed us to observe immunopositive cell somas and cytoplasmic processes throughout the mouse brain. Morphine-like immunoreactivity was present in various structures including the hippocampus, olfactory bulb, band of Broca, basal ganglia, and cerebellum. Third, by using confocal microscopy and immunofluroscence co-localization, we characterized cell types containing endogenous opiates. Interestingly, we observed that morphine-like immunoreactivity throughout the encephalon is mainly present in γ-aminobutyric acid (GABA)ergic neurons. Astrocytes were also labeled throughout the entire brain, in the cell body, in the cytoplasmic processes, and in astrocytic feet surrounding blood vessels. Finally, ultrastructural localization of morphine-like immunoreactivity was determined by electron microscopy and showed the presence of morphine-like label in presynaptic terminals in the cerebellum and postsynaptic terminals in the rest of the mouse brain. In conclusion, the presence of endogenous morphine-like compounds in brain regions not usually involved in pain modulation opens the exciting opportunity to extend the role and function of endogenous alkaloids far beyond their analgesic functions.

Funding information:
  • Canadian Institutes of Health Research - P40 RR012546(Canada)
  • NCI NIH HHS - R21 CA088351(United States)

Surface-associated astrocytes, not endfeet, form the glia limitans in posterior piriform cortex and have a spatially distributed, not a domain, organization.

  • Feig SL
  • J. Comp. Neurol.
  • 2011 Jul 1

Literature context:


Abstract:

"Surface-associated astrocytes" (SAAs) in posterior piriform cortex (PPC) are unique by virtue of a direct apposition to the cortical surface and large-caliber processes that descend into layer I. In this study additional unique and functionally relevant features of SAAs in PPC of the rat were identified by light and electron microscopy. Examination of sections cut parallel to the surface of PPC and stained for glial fibrillar acidic protein revealed that, in addition to descending processes, SAAs give rise to an extensive matrix of "superficial processes." Electron microscopy revealed that these superficial processes, together with cell bodies, form a continuous sheet at the surface of PPC with features in common with the glia limitans that is formed by endfeet in other cortical areas. These include a glia limiting membrane with basal lamina and similar associated organelles, including a striking array of mitochondria. Of particular interest, SAAs lack the domain organization observed in neocortex and hippocampus. Rather, superficial processes overlap extensively with gap junctions between their proximal regions as well as between cell bodies. Study of the descending processes revealed thin extensions, many of which appose synaptic profiles. We conclude that SAAs provide a potential substrate for bidirectional signaling and transport between brain and the pial arteries and cerebrospinal fluid in the subarachnoid space. We postulate that the spatially distributed character of SAAs in PPC reflects and supports the spatially distributed circuitry and sensory representation that are also unique features of this area.

Funding information:
  • NCRR NIH HHS - R01RR025030(United States)

Increase of close homolog of cell adhesion molecule L1 in primary afferent by nerve injury and the contribution to neuropathic pain.

  • Yamanaka H
  • J. Comp. Neurol.
  • 2011 Jun 1

Literature context:


Abstract:

The L1 family of cell adhesion molecules (L1-CAMs) is known to be involved in various neuronal functions such as cell adhesion, axon guidance, and synaptic plasticity. We investigated the detailed expression/changes of a close homolog of the L1 cell adhesion molecule (CHL1) after nerve injury and the possible role on neuropathic pain using the rat spared nerve injury (SNI) model. SNI induced the expression of CHL1 in L4/5 DRG neurons, particularly in small-size injured neurons and in satellite cells. In the spinal cord, CHL1 immunoreactivity increased mainly in laminae I-II of the dorsal horn on the side ipsilateral to the nerve injury. Ultrastructural study clarified the fine localization of CHL1 in axons of primary afferents in the dorsal horn. CHL1 immunoreactivities were localized in the adherence such as axon-axon, axon-dorsal horn neurons (dendrite, soma), and axon-glial cells (astrocyte and microglia). Experimental inhibition of CHL1 adhesion by intrathecal administration of the antibody for CHL1 extracellular domain significantly prevented and reversed SNI-induced mechanical allodynia. Thus, alterations of CHL1 may be involved in the structural plasticity after peripheral nerve injury and have important roles in neuropathic pain.

Funding information:
  • NIBIB NIH HHS - EB006733(United States)
  • NINDS NIH HHS - NS19865(United States)

Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain.

  • Guerrero-Cázares H
  • J. Comp. Neurol.
  • 2011 Apr 15

Literature context:


Abstract:

The fetal development of the anterior subventricular zone (SVZ) involves the transformation of radial glia into neural stem cells, in addition to the migration of neuroblasts from the SVZ towards different regions in the brain. In adult rodents this migration from the anterior SVZ is restricted to the olfactory bulb following a rostral migratory stream (RMS) formed by chains of migratory neuroblasts. Similar to rodents, an RMS has been suggested in the adult human brain, where the SVZ remains as an active proliferative region. Nevertheless, a human fetal RMS has not been described and the presence of migratory neuroblasts in the adult remains controversial. Here we describe the cytoarchitecture of the human SVZ at the lateral ganglionic eminence late in the second trimester of development (23-24 weeks postconception). Cell organization in this region is heterogeneous along the ventricular wall, with GFAP-positive cells aligned to the ventricle. These cells coexpress markers for radial glia like GFAPδ, nestin, and vimentin. We also show the presence of abundant migratory neuroblasts in the anterior horn SVZ forming structures here denominated cell throngs. Interestingly, a ventral extension of the lateral ventricle suggests the presence of a putative RMS. Nevertheless, in the olfactory bulb neuroblast throngs or chain-like structures were not observed. The lack of these structures closer to the olfactory bulb could indicate a destination for the migratory neuroblasts outside the olfactory bulb in the human brain.

Funding information:
  • NCRR NIH HHS - P41 RR018627(United States)

Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development.

  • Bloch J
  • J. Comp. Neurol.
  • 2011 Mar 1

Literature context:


Abstract:

We have demonstrated that cortical cell autografts might be a useful therapy in two monkey models of neurological disease: motor cortex lesion and Parkinson's disease. However, the origin of the useful transplanted cells obtained from cortical biopsies is not clear. In this report we describe the expression of doublecortin (DCX) in these cells based on reverse-transcription polymerase chain reaction (RT-PCR) and immunodetection in the adult primate cortex and cell cultures. The results showed that DCX-positive cells were present in the whole primate cerebral cortex and also expressed glial and/or neuronal markers such as glial fibrillary protein (GFAP) or neuronal nuclei (NeuN). We also demonstrated that only DCX/GFAP positive cells were able to proliferate and originate progenitor cells in vitro. We hypothesize that these DCX-positive cells in vivo have a role in cortical plasticity and brain reaction to injury. Moreover, in vitro these DCX-positive cells have the potential to reacquire progenitor characteristics that confirm their potential for brain repair.

Funding information:
  • Wellcome Trust - 075491/Z/04(United Kingdom)

Characterization of retinal function and glial cell response in a mouse model of oxygen-induced retinopathy.

  • Vessey KA
  • J. Comp. Neurol.
  • 2011 Feb 15

Literature context:


Abstract:

Retinal neovascularization, such as that occurring in proliferative diabetic retinopathy and retinopathy of prematurity, can have serious effects on visual function. By using a mouse model of neovascularization, oxygen-induced retinopathy (OIR), the interplay among angiogenesis, neuronal function, and the macro- and micro-glial response was explored. OIR was induced by exposure of mice to 75% oxygen from postnatal day 7 (P7) to P11 and then room air until P18. Controls were reared in room air. Blood vessel development was assessed by using fluorescence histochemistry. Aberrant intravitreal neovascularization was present across all eccentricities of retina in mice with OIR, whereas the number of vessels present in the deep plexus was reduced in the central regions. Neuronal function of both the rod and cone pathways, assessed by using the electroretinogram, was found to be significantly reduced in OIR. This may in part be explained by an alteration in photoreceptor outer segment morphology and also a loss of neurons and their synapses in the inner nuclear and plexiform layers of the central retina. In addition, there was an increase in the number of gliotic Müller cells and microglia in mice with OIR and the increase in the number of these cells correlated with the absence of the deep plexus. This indicates that the activity of both macro- and microglia is altered in regions where the deep plexus blood supply is deficient. Treatments or genetic manipulations directed toward amelioration of proliferative retinopathy need to address not only the vascular changes but also the alterations in neuronal and macro- and microglial function.

Funding information:
  • NCI NIH HHS - RC2CA148317(United States)

Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus.

  • Jinno S
  • J. Comp. Neurol.
  • 2011 Feb 15

Literature context:


Abstract:

In the rodent brain, diverse functions are topographically distributed within the hippocampus. For instance, the dorsal (septal) hippocampus is involved in spatial memory, whereas the ventral (temporal) hippocampus is related to emotion and anxiety. Accumulating evidence shows that age-dependent decline in hippocampal neurogenesis is associated with impairments of these functions. However, little is known about whether the decline in dentate granule cell production during aging follows a topographic pattern. Here we quantitatively estimated specific populations of adult-born cells in young adult and middle-aged mice by using endogenous markers and determined whether age-dependent reductions in adult neurogenesis exhibited topographic differences. The numerical densities (NDs) of putative primary progenitors, intermediate neuronal progenitors, and neuronal lineages were higher in the dorsal dentate gyrus (DG) than in the ventral DG both in young adult and in middle-aged mice, but the ratios of the NDs in the dorsal DG to the NDs in the ventral DG noticeably increased with age. The age-related reductions in the numbers of these populations were larger in the ventral DG than in the dorsal DG. By contrast, the NDs of glial lineages were higher in the ventral DG than in the dorsal DG during life, and the numbers of glial lineages showed no significant age-related changes. Our findings suggest that neurogenesis, but not gliogenesis, wanes faster in the ventral hippocampus than in the dorsal hippocampus during aging. Such age-related topographic changes in hippocampal neurogenesis might be implicated in memory and affective impairments in older people.

Funding information:
  • NIMH NIH HHS - MH068457(United States)

Olfactory ensheathing glia express aquaporin 1.

  • Shields SD
  • J. Comp. Neurol.
  • 2010 Nov 1

Literature context:


Abstract:

Olfactory ensheathing glia (OEG) are distinct from other glia in their developmental origin, presence in both the peripheral and central nervous systems, and highly restricted location. OEG are present only in the olfactory lamina propria, olfactory nerve, and the outer two layers of the olfactory bulb, where they envelop bundles of olfactory sensory neuron axons in a manner distinct from myelination. Because of their unique properties and their association with the continually generated olfactory sensory neurons, OEG have attracted interest for their potential capacity to support axonal regeneration, for example, after spinal cord injury. However, study of the properties and function of OEG has been hampered by a paucity of neurochemical markers with which to identify and distinguish them definitively from other types of glia. Here we provide evidence through anatomical colocalization studies that OEG express the water channel aquaporin 1 (AQP1), both in vivo and in vitro. We propose that AQP1 expression represents an important distinguishing characteristic of OEG, which may impart unique function to these glia.

Funding information:
  • NHLBI NIH HHS - HL66621(United States)

Astroglial structures in the zebrafish brain.

  • Grupp L
  • J. Comp. Neurol.
  • 2010 Nov 1

Literature context:


Abstract:

To understand components shaping the neuronal environment we studied the astroglial cells in the zebrafish brain using immunocytochemistry for structural and junctional markers, electron microscopy including freeze fracturing, and probed for the water channel protein aquaporin-4. Glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) showed largely overlapping immunoreactivity: GFAP in the main glial processes and GS in main processes and smaller branches. Claudin-3 immunoreactivity was spread in astroglial cells along their major processes. The ventricular lining was immunoreactive for the tight-junction associated protein ZO-1, in the telencephalon located on the dorsal, lateral, and medial surface due to the everting morphogenesis. In the tectum, subpial glial endfeet were also positive for ZO-1. Correspondingly, electron microscopy revealed junctional complexes between subpial glial endfeet. However, in freeze-fracture analysis tight junctional strands were not found between astroglial membranes, either in the optic tectum or in the telencephalon. Occurrence of aquaporin-4, the major astrocytic water channel in mammals, was demonstrated by polymerase chain reaction (PCR) analysis and immunocytochemistry in tectum and telencephalon. Localization of aquaporin-4 was not polarized but distributed along the entire radial extent of the cell. Interestingly, their membranes were devoid of the orthogonal arrays of particles formed by aquaporin-4 in mammals. Finally, we investigated astroglial cells in proliferative areas. Brain lipid basic protein, a marker of early glial differentiation but not GS, were present in some proliferation zones, whereas cells lining the ventricle were positive for both markers. Thus, astroglial cells in the zebrafish differ in many aspects from mammalian astrocytes.

Funding information:
  • Intramural NIH HHS - (United States)
  • Wellcome Trust - 087737(United Kingdom)

cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina.

  • Trifunović D
  • J. Comp. Neurol.
  • 2010 Sep 1

Literature context:


Abstract:

Inherited retinal degeneration affecting both rod and cone photoreceptors constitutes one of the leading causes of blindness in the developed world. Such degeneration is at present untreatable, and the underlying neurodegenerative mechanisms are unknown, even though certain genetic causes have been established. The rd1 mouse is one of the best characterized animal models for rod photoreceptor degeneration, whereas the cpfl1 mouse is a recently discovered model for cone cell death. Because both animal models are affected by functionally similar mutations in the rod and cone phosphodiesterase 6 genes, respectively, we asked whether the mechanisms of photoreceptor degeneration in these two mouse lines share common pathways. In the present study, we followed the temporal progression of photoreceptor degeneration in the cpfl1 retina, correlated it with specific metabolic markers, and compared it with the wild-type and the rd1 situation. Similar to corresponding rd1 observations, cpfl1 cone photoreceptor cell death was associated with an accumulation of cyclic guanosine monophosphate (cGMP), activity of calpains, and phosphorylation of vasodilator-stimulated protein (VASP). Cone degeneration progressed rapidly, with a peak in cell death around postnatal day 24. Furthermore, cpfl1 cone photoreceptor migration during early postnatal development was delayed significantly compared with the corresponding wild-type retina. The finding that rod and cone photoreceptor degeneration was associated with the same metabolic markers suggests that in both cell types similar degenerative mechanisms are active. This raises the possibility that equivalent neuroprotective strategies may be used to prevent both rod and cone photoreceptor degeneration.

Funding information:
  • NEI NIH HHS - PN2EY018228(United States)

Molecular regulation of the developing commissural plate.

  • Moldrich RX
  • J. Comp. Neurol.
  • 2010 Sep 15

Literature context:


Abstract:

Coordinated transfer of information between the brain hemispheres is essential for function and occurs via three axonal commissures in the telencephalon: the corpus callosum (CC), hippocampal commissure (HC), and anterior commissure (AC). Commissural malformations occur in over 50 human congenital syndromes causing mild to severe cognitive impairment. Disruption of multiple commissures in some syndromes suggests that common mechanisms may underpin their development. Diffusion tensor magnetic resonance imaging revealed that forebrain commissures crossed the midline in a highly specific manner within an oblique plane of tissue, referred to as the commissural plate. This specific anatomical positioning suggests that correct patterning of the commissural plate may influence forebrain commissure formation. No analysis of the molecular specification of the commissural plate has been performed in any species; therefore, we utilized specific transcription factor markers to delineate the commissural plate and identify its various subdomains. We found that the mouse commissural plate consists of four domains and tested the hypothesis that disruption of these domains might affect commissure formation. Disruption of the dorsal domains occurred in strains with commissural defects such as Emx2 and Nfia knockout mice but commissural plate patterning was normal in other acallosal strains such as Satb2(-/-). Finally, we demonstrate an essential role for the morphogen Fgf8 in establishing the commissural plate at later developmental stages. The results demonstrate that correct patterning of the commissural plate is an important mechanism in forebrain commissure formation.

Funding information:
  • NIBIB NIH HHS - 1 R01 EB005034(United States)

Inherited neuroaxonal dystrophy in dogs causing lethal, fetal-onset motor system dysfunction and cerebellar hypoplasia.

  • Fyfe JC
  • J. Comp. Neurol.
  • 2010 Sep 15

Literature context:


Abstract:

Neuroaxonal dystrophy in brainstem, spinal cord tracts, and spinal nerves accompanied by cerebellar hypoplasia was observed in a colony of laboratory dogs. Fetal akinesia was documented by ultrasonographic examination. At birth, affected puppies exhibited stereotypical positioning of limbs, scoliosis, arthrogryposis, pulmonary hypoplasia, and respiratory failure. Regional hypoplasia in the central nervous system was apparent grossly, most strikingly as underdeveloped cerebellum and spinal cord. Histopathologic abnormalities included swollen axons and spheroids in brainstem and spinal cord tracts; reduced cerebellar foliation, patchy loss of Purkinje cells, multifocal thinning of the external granular cell layer, and loss of neurons in the deep cerebellar nuclei; spheroids and loss of myelinated axons in spinal roots and peripheral nerves; increased myocyte apoptosis in skeletal muscle; and fibrofatty connective tissue proliferation around joints. Breeding studies demonstrated that the canine disorder is a fully penetrant, simple autosomal recessive trait. The disorder demonstrated a type and distribution of lesions homologous to that of human infantile neuroaxonal dystrophy (INAD), most commonly caused by mutations of phospholipase A2 group VI gene (PLA2G6), but alleles of informative markers flanking the canine PLA2G6 locus did not associate with the canine disorder. Thus, fetal-onset neuroaxonal dystrophy in dogs, a species with well-developed genome mapping resources, provides a unique opportunity for additional disease gene discovery and understanding of this pathology.

Funding information:
  • NIGMS NIH HHS - 5R01GM72649(United States)

Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb.

  • Lepousez G
  • J. Comp. Neurol.
  • 2010 Jun 1

Literature context:


Abstract:

Neuropeptides play a major role in the modulation of information processing in neural networks. Somatostatin, one of the most concentrated neuropeptides in the brain, is found in many sensory systems including the olfactory pathway. However, its cellular distribution in the mouse main olfactory bulb (MOB) is yet to be characterized. Here we show that approximately 95% of mouse bulbar somatostatin-immunoreactive (SRIF-ir) cells describe a homogeneous population of interneurons. These are restricted to the inner lamina of the external plexiform layer (iEPL) with dendritic field strictly confined to the region. iEPL SRIF-ir neurons share some morphological features of Van Gehuchten short-axon cells, and always express glutamic acid decarboxylase, calretinin, and vasoactive intestinal peptide. One-half of SRIF-ir neurons are parvalbumin-ir, revealing an atypical neurochemical profile when compared to SRIF-ir interneurons of other forebrain regions such as cortex or hippocampus. Somatostatin is also present in fibers and in a few sparse presumptive deep short-axon cells in the granule cell layer (GCL), which were previously reported in other mammalian species. The spatial distribution of somatostatin interneurons in the MOB iEPL clearly outlines the region where lateral dendrites of mitral cells interact with GCL inhibitory interneurons through dendrodendritic reciprocal synapses. Symmetrical and asymmetrical synaptic contacts occur between SRIF-ir dendrites and mitral cell dendrites. Such restricted localization of somatostatin interneurons and connectivity in the bulbar synaptic network strongly suggest that the peptide plays a functional role in the modulation of olfactory processing.

Funding information:
  • PHS HHS - HHSN268200248178C(United States)

Area-specific migration and recruitment of new neurons in the adult songbird brain.

  • Vellema M
  • J. Comp. Neurol.
  • 2010 May 1

Literature context:


Abstract:

Neuron recruitment has been implicated in morphological and functional plasticity in the adult brain. Whereas mammals restrict neuron recruitment specifically to two regions of known plasticity, the hippocampus and olfactory bulb, newborn neurons are found throughout the forebrain of adult songbirds. In order to study the area-specificity of the widespread proliferation and recruitment in the songbird brain, six adult male canaries received repetitive intraperitoneal injections of the mitotic marker BrdU (5-bromo-2-deoxyuridine) and were sacrificed after 24 hours to study proliferation or after 38 days to study recruitment. Migration and incorporation of new neurons was apparent throughout many but not all parts of the canary forebrain and was quantitatively related to mitotic levels in the most closely associated proliferative zones. Surprisingly, some areas of the vocal control system sensitive to plastic changes, such as nucleus higher vocal center (HVC) and area X, recruited similar numbers of new neurons as their surrounding brain tissues, employing no specific directional mechanisms. The distribution pattern in and around HVC could best be described by a random displacement model, where cells originating from the overlying lateral ventricle can move independently in any direction. Other plastic song control areas, such as the medial magnocellular nucleus of anterior nidopallium and the robust nucleus of arcopallium, were specifically avoided by migrating neurons, while migration toward the olfactory bulb showed high specificity, similar to the mammalian rostral migratory stream. Thus, different mechanisms appear to organize area-specific neuron recruitment in different recipients of the adult songbird brain, unrelated to global plasticity of brain regions.

Funding information:
  • Medical Research Council - BB/G02247X/1(United Kingdom)

Regional heterogeneity in astrocyte responses following contusive spinal cord injury in mice.

  • White RE
  • J. Comp. Neurol.
  • 2010 Apr 15

Literature context:


Abstract:

Astrocytes and their precursors respond to spinal cord injury (SCI) by proliferating, migrating, and altering phenotype. This contributes to glial scar formation at the lesion border and gliosis in spared gray and white matter. The present study was undertaken to evaluate astrocyte changes over time and determine when and where interventions might be targeted to alter the astrocyte response. Bromodeoxyuridine (BrdU) was administered to mice 3 days after SCI, and cells expressing BrdU and the astrocyte marker, glial fibrillary acidic protein (GFAP), were counted at 3, 7, and 49 days post-injury (DPI). BrdU-labeled cells accumulated at the lesion border by 7 DPI and approximately half of these expressed GFAP. In spared white matter, the total number of BrdU+ cells decreased, while the percentage of BrdU+ cells expressing GFAP increased at 49 DPI. Phenotypic changes were examined using the progenitor marker nestin, the radial glial marker, brain lipid binding protein (BLBP), and GFAP. Nestin was upregulated by 3 DPI and declined between 7 and 49 DPI in all regions, and GFAP increased and remained above naïve levels at all timepoints. BLBP increased early and remained high along the lesion border and spared white matter, but was expressed transiently by cells lining the central canal and in a unique population of small cells found within the lesion and in gray matter rostral and caudal to the border. The results demonstrate that the astrocyte response to SCI is regionally heterogeneous, and suggests astrocyte populations that could be targeted by interventions.

Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons.

  • Martín-Ibáñez R
  • J. Comp. Neurol.
  • 2010 Feb 1

Literature context:


Abstract:

During central nervous system development, several transcription factors regulate the differentiation of progenitor cells to postmitotic neurons. Here we describe a novel role for Ikaros-1 in the generation of late-born striatal neurons. Our results show that Ikaros-1 is expressed in the boundary of the striatal germinal zone (GZ)/mantle zone (MZ), where it induces cell cycle arrest of neural progenitors by up-regulation of the cyclin-dependent kinase inhibitor (CDKi) p21(Cip1/Waf1). This effect is coupled with the neuronal differentiation of late precursors, which in turn is critical for the second wave of striatal neurogenesis that gives rise to matrix neurons. Consistently, Ikaros(-/-) mice had fewer striatal projecting neurons and, in particular, enkephalin (ENK)-positive neurons. In addition, overexpression of Ikaros-1 in primary striatal cultures increases the number of calbindin- and ENK-positive neurons. Our results also show that Ikaros-1 acts downstream of the Dlx family of transcription factors, insofar as its expression is lost in Dlx1/2 double knockout mice. However, we demonstrate that Ikaros-1 and Ebf-1 independently regulate the final determination of the two populations of striatal projection neurons of the matrix compartment, ENK- and substance P-positive neurons. In conclusion, our findings identify Ikaros-1 as a modulator of cell cycle exit of neural progenitors that gives rise to the neurogenesis of ENK-positive striatal neurons.

Funding information:
  • Medical Research Council - G0601585(United Kingdom)

Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses.

  • Su J
  • J. Comp. Neurol.
  • 2010 Jan 10

Literature context:


Abstract:

Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses.

Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations.

  • Gritti A
  • J. Comp. Neurol.
  • 2009 Nov 20

Literature context:


Abstract:

Neural stem cells (NSCs) in the murine subventricular zone (SVZ) niche allow life-long neurogenesis. During the first postnatal month and throughout aging, the decrease of neuroblasts and the rise of astrocytes results in diminished neurogenesis and increased astrocyte:neuron ratio. Also, a different neurogenic activity characterizes the SVZ periventricular region (LV, lateral ventricle) as compared to its rostral extension (RE). In order to investigate whether and to what extent these physiological modifications may be ascribed to intrinsic changes of the endogenous NSC/progenitor features, we performed a functional analysis on NSCs isolated and cultured from LV and RE tissues at distinct postnatal stages that are marked by striking modifications to the SVZ niche in vivo. We evaluated the effect of age and brain region on long-term proliferation and multipotency, and characterized the cell type composition of NSC-derived progeny, comparing this make-up to that of region- and age-matched primary neural cultures. Furthermore, we analyzed the effect of prolonged in vitro expansion on NSC functional properties. We documented age- and region-dependent differences on the clonogenic efficiency and on the long-term proliferative capacity of NSCs. Also, we found age- and region-dependent quantitative changes in the cell composition of NSC progeny (decreased quantity of neurons and oligodendrocytes; increased amount of astroglial cells) and these differences were maintained in long-term cultured NSC populations. Overall, these data strengthen the hypothesis that age- and region-dependent differences in neurogenesis (observed in vivo) may be ascribed to the changes in the intrinsic developmental program of the NSC populations.

Developmental expression of prion protein and its ligands stress-inducible protein 1 and vitronectin.

  • Hajj GN
  • J. Comp. Neurol.
  • 2009 Nov 20

Literature context:


Abstract:

Prion protein (PrP(C)) is the normal isoform of PrP(Sc), a protein involved in neurodegenerative disorders. PrP(C) participates in neuritogenesis, neuroprotection, and memory consolidation through its interaction with the secreted protein stress-inducible protein 1 (STI1) and the extracellular matrix protein vitronectin (Vn). Although PrP(C) mRNA expression has been documented during embryogenesis, its protein expression patterns have not been evaluated. Furthermore, little is known about either Vn or STI protein expression. In this study, PrP(C), STI1, and Vn protein expression was explored throughout mouse embryonic life. We found that the distributions of the three proteins were spatiotemporally related. STI1 and Vn expression became evident at E8, earlier than PrP(C), in the nervous system and heart. At E10, we observed, in the spinal cord, a gradient of expression of the three proteins, more abundant in the notochord and floor plate, suggesting that they can have a role in axonal growth. As development proceeded, the three proteins were detected in other organs, suggesting that they may play a role in the development of nonneural tissues as well. Finally, although STI1 and Vn are PrP(C) ligands, their expression was not altered in PrP(C)-null mice.

Long-term survival of olfactory sensory neurons after target depletion.

  • Sultan-Styne K
  • J. Comp. Neurol.
  • 2009 Aug 20

Literature context:


Abstract:

Life-long addition and elimination of neurons within the adult olfactory epithelium and olfactory bulb allows for adaptive structural responses to sensory experience, learning, and recovery after injury. The interdependence of the two structures is highlighted by the shortened life span of sensory neurons deprived of bulb contact, and has prompted the hypothesis that trophic cues from the bulb contribute to their survival. The specific identity and source of these signals remain unknown. To investigate the potential role of target neurons in this support, we employed a neurotoxic lesion to selectively remove them while preserving the remaining nerve projection pathway, and examined the dynamics of sensory neuron proliferation and survival. Pulse-labeling of progenitors with bromodeoxyuridine showed that, as with surgical bulb removal, increased apoptosis in the epithelium triggered accelerated production of new neurons after chemical depletion of target cells. Rather than undergoing premature death, a large subpopulation of these neurons survived long term. The combination of increased proliferation and extended survival resulted in essentially normal numbers of new sensory neurons surviving for as long as 5 weeks, with an accompanying restoration of olfactory marker protein expression. Changes in neurotrophic factor expression levels as measured by quantitative polymerase chain reaction (Q-PCR), and in bulb cell populations, including the addition of new neurons generated in the subventricular zone, were observed in the injured bulb. These data indicate that olfactory sensory neurons can adapt to reductions in their normal target field by obtaining sufficient support from remaining or alternative cell sources to survive and maintain their projections.

Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease.

  • Leonard BW
  • J. Comp. Neurol.
  • 2009 Jul 20

Literature context:


Abstract:

In mice and in young adult humans, the subventricular zone (SVZ) contains multipotent, dividing astrocytes, some of which, when cultured, produce neurospheres that differentiate into neurons and glia. It is unknown whether the SVZ of very old humans has this capacity. Here, we report that neural stem/progenitor cells can also be cultured from rapid autopsy samples of SVZ from elderly human subjects, including patients with age-related neurologic disorders. Histological sections of SVZ from these cases showed a glial fibrillary acidic protein (GFAP)-positive ribbon of astrocytes similar to the astrocyte ribbon in human periventricular white matter biopsies that is reported to be a rich source of neural progenitors. Cultures of the SVZ contained 1) neurospheres with a core of Musashi-1-, nestin-, and nucleostemin-immunopositive cells as well as more differentiated GFAP-positive astrocytes; 2) SMI-311-, MAP2a/b-, and beta-tubulin(III)-positive neurons; and 3) galactocerebroside-positive oligodendrocytes. Neurospheres continued to generate differentiated progeny for months after primary culturing, in some cases nearly 2 years postinitial plating. Patch clamp studies of differentiated SVZ cells expressing neuron-specific antigens revealed voltage-dependent, tetrodotoxin-sensitive, inward Na+ currents and voltage-dependent, delayed, slowly inactivating K+ currents, electrophysiologic characteristics of neurons. A subpopulation of these cells also exhibited responses consistent with the kinetics and pharmacology of the h-current. However, although these cells displayed some aspects of neuronal function, they remained immature, insofar as they did not fire action potentials. These studies suggest that human neural progenitor activity may remain viable throughout much of the life span, even in the face of severe neurodegenerative disease.

Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream.

  • Gil-Perotin S
  • J. Comp. Neurol.
  • 2009 Jun 10

Literature context:


Abstract:

Recent publications have shown that the lateral wall of the lateral ventricles in the Macaca fascicularis brain, in particular the subventricular zone (SVZ), contains neural stem cells throughout adulthood that migrate through a migratory pathway (RMS) to the olfactory bulb (OB). To date, a detailed and systematic cytoarchitectural and ultrastructural study of the monkey SVZ and RMS has not been done. We found that the organization of the SVZ was similar to that of humans, with the ependymal layer surrounding the lateral ventricles, a hypocellular GAP layer formed by astrocytic and ependymal expansions, and the astrocyte ribbon, composed of astrocytic bodies. We found no cells corresponding to the type C proliferating precursor of the rodent brain. Instead, proliferating cells, expressed as Ki-67 immunoreactivity, were predominantly young neurons concentrated in the anterior regions, and occasional astrocytes of the ribbon. We observed displaced ependymal cells of still unknown significance. New neurons tended to organize in chain-like structures, which were surrounded by astrocytes. This pattern was highly reminiscent of that observed in rodent RMS, but not in humans. These chains spread from the frontal SVZ along a GAP-like layer, uniquely composed of astrocytic expansions, to the olfactory bulb (OB). The number of neuronal chains and the number of chain-forming cells decreased gradually upon reaching the OB. The purpose of this work is to provide a reference for future studies in the field of adult neurogenesis that may lead to an understanding of the fate and functionality of newborn neurons in primates, and ultimately in humans.

Funding information:
  • NINDS NIH HHS - R01 NS053976-01(United States)

Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats.

  • Lo TP
  • J. Comp. Neurol.
  • 2009 Jun 10

Literature context:


Abstract:

Hypothermia has been employed during the past 30 years as a therapeutic modality for spinal cord injury (SCI) in animal models and in humans. With our newly developed rat cervical model of contusive SCI, we investigated the therapeutic efficacy of transient systemic hypothermia (beginning 5 minutes post-injury for 4 hours, 33 degrees C) with gradual rewarming (1 degrees C per hour) for the preservation of tissue and the prevention of injury-induced functional loss. A moderate cervical displacement SCI was performed in female Fischer rats, and behavior was assessed for 8 weeks. Histologically, the application of hypothermia after SCI resulted in significant increases in normal-appearing white matter (31% increase) and gray matter (38% increase) volumes, greater preservation (four-fold) of neurons immediately rostral and caudal to the injury epicenter, and enhanced sparing of axonal connections from retrogradely traced reticulospinal neurons (127% increase) compared with normothermic controls. Functionally, a faster rate of recovery in open field locomotor ability (BBB score, weeks 1-3) and improved forelimb strength, as measured by both weight-supported hanging (43% increase) and grip strength (25% increase), were obtained after hypothermia. The current study demonstrates that mild systemic hypothermia is effective for retarding tissue damage and reducing neurological deficits following a clinically relevant contusive cervical SCI.

Funding information:
  • NEI NIH HHS - P30 EY002162(United States)

Binge-like postnatal alcohol exposure triggers cortical gliogenesis in adolescent rats.

  • Helfer JL
  • J. Comp. Neurol.
  • 2009 May 20

Literature context:


Abstract:

The long-term effects of binge-like postnatal alcohol exposure on cell proliferation and differentiation in the adolescent rat neocortex were examined. Unlike the hippocampal dentate gyrus, where proliferation of progenitors results primarily in addition of granule cells in adulthood, the vast majority of newly generated cells in the intact mature rodent neocortex appear to be glial cells. The current study examined cytogenesis in the motor cortex of adolescent and adult rats that were exposed to 5.25 g/kg/day of alcohol on postnatal days (PD) 4-9 in a binge manner. Cytogenesis was examined at PD50 (through bromodeoxyuridine [BrdU] labeling) and survival of these newly generated cells was evaluated at PD80. At PD50, significantly more BrdU-positive cells were present in the motor cortex of alcohol-exposed rats than controls. Confocal analysis revealed that the majority (>60%) of these labeled cells also expressed NG2 chondroitin sulfate proteoglycan (NG2 glia). Additionally, survival of these newly generated cortical cells was affected by neonatal alcohol exposure, based on the greater reduction in the number of BrdU-labeled cells from PD50 to PD80 in the alcohol-exposed animals compared to controls. These findings demonstrate that neonatal alcohol exposure triggers an increase in gliogenesis in the adult motor cortex.

Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development.

  • Jakovcevski I
  • J. Comp. Neurol.
  • 2009 Apr 10

Literature context:


Abstract:

Several L1-related adhesion molecules, expressed in a well-coordinated temporospatial pattern during development, are important for fine tuning of specific cerebellar circuitries. We tested the hypothesis that CHL1, the close homologue of L1, abundantly expressed in the developing and adult cerebellum, is also required for normal cerebellar histogenesis. We found that constitutive ablation of CHL1 in mice caused significant loss (20-23%) of Purkinje and granule cells in the mature 2-month-old cerebellum. The ratio of stellate/basket interneurons to Purkinje cells was abnormally high (+38%) in CHL1-deficient (CHL1-/-) mice compared with wild-type (CHL1+/+) littermates, but the gamma-aminobutyric acid (GABA)ergic synaptic inputs to Purkinje cell bodies and dendrites were normal, as were numbers of Golgi interneurons, microglia, astrocytes, and Bergmann glia. Purkinje cell loss occurred before the first postnatal week and was associated with enhanced apoptosis, presumably as a consequence of CHL1 deficiency in afferent axons. In contrast, generation of granule cells, as indicated by in vivo analyses of cell proliferation and death, was unaffected in 1-week-old CHL1-/- mice, but numbers of migrating granule cells in the molecular layer were increased. This increase was likely related to retarded cell migration because CHL1-/- granule cells migrated more slowly than CHL1+/+ cells in vitro, and Bergmann glial processes guiding migration in vivo expressed CHL1 in wild-type mice. Granule cell deficiency in adult CHL1-/- mice appeared to result from decreased precursor cell proliferation after the first postnatal week. Our results indicate that CHL1 promotes Purkinje and granule cell survival and granule cell migration during cerebellar development.

Funding information:
  • NICHD NIH HHS - P30 HD15052(United States)

Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice.

  • Puverel S
  • J. Comp. Neurol.
  • 2009 Jan 10

Literature context:


Abstract:

The adult subventricular zone (SVZ) contains progenitors cells, which continually give rise to new neurons that migrate along the rostral migratory stream (RMS) to the olfactory bulbs (OB). Prokineticin receptor 2 (ProKR2) is a G-protein-coupled receptor that plays an essential role in this migration process. However, the identity of the prokr2-expressing cells has not yet been clearly established. Here, we have characterized in detail the identity of the prokr2-expressing cells in the SVZ/RMS/OB pathway in adult mice. In the SVZ, accumulation of prokr2 transcripts was detected in almost all migrating neuroblasts or type A cells as well as in a large population of their precursors, the rapidly dividing type C cells. Moreover, we observed that, in dissociated SVZ cells from Mash1::GFP postnatal mice, ProKR2 protein is also present in type C and type A cells. We found that, along the RMS and in the OB, prokr2 expression was restricted to migrating type A cells and was absent in astrocytes. Finally, we observed a highly marked decrease of prokr2 expression in Mash1-/- mutant mice, suggesting that this transcription factor directly or indirectly regulates prokr2 expression. Although the expression of ProKR2 in migrating type A cells is in good agreement with the essential role played by this receptor during this migration process, its expression in a large population of their progenitors suggests an additional function for ProKR2, providing novel insights into the role of ProKR2/ProK2 signalling in adult neurogenesis.

Funding information:
  • NINDS NIH HHS - R01 NS045734(United States)

Limited intravascular coupling in the rodent brainstem and retina supports a role for glia in regional blood flow.

  • Kuo IY
  • J. Comp. Neurol.
  • 2008 Dec 20

Literature context:


Abstract:

Regional synaptic activity induces local increases in perfusion that are coupled to upstream vasodilation and improved blood flow. In the cerebral circulation, it has been proposed that astrocytes mediate the link between the initiating stimulus and local vasodilation through propagated intracellular calcium waves. In the systemic circulation the mechanism by which local vasodilation triggers upstream alterations in blood flow involves electrotonic propagation of hyperpolarization via endothelial gap junctions, although less is known concerning the cerebral circulation. The present study aimed to investigate the extent of coupling in microvessels of the rodent brainstem and retina and the subtypes of intracellular calcium stores that might mediate astrocytic signaling. Within the brainstem, connexins (Cxs) 37 and 40 were restricted to the endothelium of pial vessels and larger penetrating arterioles, whereas astrocytic Cxs30 and 43 were found closely associated with pre- and postsynaptic neurons and nearby microvessels. Within the rat retina, Cxs37 and 40 were expressed in large radiating arterioles, but were not found in smaller vessels on the retinal surface or in the deeper retinal layers. These Cxs were absent from all retinal vessels in mice. Astrocytes, expressing Cxs30 and 43 in the rat, but only Cx43 in the mouse, were found closely associated with superficial, but not deeper blood vessels. Inositol-trisphosphate receptors (IP(3)R) 1 and 2 were expressed within brainstem astrocytes, whereas IP(3)R1 and 3 were expressed within retinal astrocytes. Limited intravascular coupling and the proximity of astrocytic networks to blood vessels supports a role for glia in activity-dependent alterations in central blood flow.

Funding information:
  • NEI NIH HHS - P30 EY002162(United States)

Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum.

  • Yang Z
  • J. Comp. Neurol.
  • 2008 Nov 1

Literature context:


Abstract:

Ischemia-induced striatal neurogenesis from progenitors in the adjacent subventricular zone (SVZ) in young and adult rodents has been reported. However, it has not been established whether the precursors that reside in the SVZ retain the capacity to produce the full range of striatal neurons that has been destroyed. By using a neonatal rat model of hypoxic/ischemic brain damage, we show here that virtually all of the newly produced striatal neurons are calretinin (CR)-immunoreactive (+), but not DARPP-32(+), calbindin-D-28K(+), parvalbumin(+), somatostatin(+), or choline acetyltransferase(+). Retroviral fate-mapping studies confirm that these newly born CR(+) neurons are indeed descendants of the SVZ. Our studies indicate that, although the postnatal SVZ has the capacity to produce a range of neurons, only a subset of this repertoire is manifested in the brain after injury.

Retinal anatomy and visual performance in a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus).

  • Gaillard F
  • J. Comp. Neurol.
  • 2008 Oct 10

Literature context:


Abstract:

Unlike laboratory rats and mice, muridae of the Arvicanthis family (A. ansorgei and A. niloticus) are adapted to functioning best in daylight. To date, they have been used as experimental models mainly in studies of circadian rhythms. However, recent work aimed at optimizing photoreceptor-directed gene delivery vectors (Khani et al. [2007] Invest Ophthalmol Vis Sci 48:3954-3961) suggests their potential usefulness for studying retinal pathologies and therapies. In the present study we analyzed the retinal anatomy and visual performance of the Nile grass rat (A. niloticus) using immunohistofluorescence and the optokinetic response (OKR). We found that approximately 35-40% of photoreceptors are cones; that many neural features of the inner retina are similar to those in other diurnal mammals; and that spatial acuity, measured by the OKR, is more than two times that of the usual laboratory rodents. These observations are consistent with the known diurnal habits of this animal, and further support its pertinence as a complementary model for studies of structure, function, and pathology in cone-rich mammalian retinae.

Funding information:
  • NIGMS NIH HHS - R01 GM071832-03(United States)

Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats.

  • Tripathi RB
  • J. Comp. Neurol.
  • 2008 Sep 10

Literature context:


Abstract:

Demyelination and oligodendrocyte loss following spinal cord injury (SCI) are well documented. Recently, we showed oligodendrocyte progenitor cell (OPC) accumulation and robust oligodendrocyte genesis occurring along SCI lesion borders. We have since begun investigating potential mechanisms for this endogenous repair response. Here, we examined ciliary neurotrophic factor (CNTF) and fibroblast growth factor-2 (FGF-2) expression, because both factors alter progenitor proliferation and differentiation and are increased in several CNS disorders. We hypothesized that CNTF and FGF-2 would increase after SCI, especially in regions of enhanced oligogenesis. First, CNTF protein was quantified using Western blots, which revealed that CNTF protein continually rose through 28 days post injury (dpi). Next, by using immunohistochemistry, we examined the spatiotemporal expression of CNTF in cross-sections spanning the injury site. CNTF immunoreactivity was observed on astrocytes and oligodendrocytes in naïve and contused spinal cords. Significantly increased CNTF was detected in spared white and gray matter between 5 and 28 dpi compared with uninjured controls. By 28 dpi, CNTF expression was significantly higher along lesion borders compared with outlying spared tissue; a similar distribution of phosphorylated STAT3, a transcription factor up-regulated by CNTF and to a lesser extent FGF-2, was also detected. Because CNTF can potentiate FGF-2 expression, we examined the distribution of FGF-2+ cells. Significantly more FGF-2+ cells were noted along lesion borders at 7 and 28 dpi. Thus, both CNTF and FGF-2 are present in regions of elevated OPC proliferation and oligodendrocyte generation after SCI and therefore may play a role in injury-induced gliogenesis.

Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody.

  • Hoff S
  • J. Comp. Neurol.
  • 2008 Aug 1

Literature context:


Abstract:

Quantitative changes of enteric glia (EGC) have been implicated in gastrointestinal disorders. To facilitate future studies of EGC in human pathology, we aimed to characterize thoroughly glial markers in the human enteric nervous system (ENS) and to compare EGC in man and guinea pig. Whole-mount preparations of the enteric nerve plexuses from human and guinea pig ileum and colon were labeled with antibodies against S100b, glial fibrillary acidic protein (GFAP), and p75NGFR and the transcription factors Sox8/9/10 and neuronally counterstained. Abundant immunoreactivity (IR) for S100b, GFAP, p75NGFR, and Sox8/9/10 was detected in EGC of all studied regions. Although the cytoplasmatic staining pattern of most markers did not permit glial quantification, the nuclear localization of Sox8/9/10-IR allowed to identify and count all EGC individually. In both man and guinea pig, myenteric ganglia were larger and contained more EGC and neurons than submucous ganglia. Furthermore, there were more EGC in the human than in the guinea pig myenteric plexus (MP), glial density was consistently higher in the human ENS, and the glia index (glia:neuron ratio) ranged from 1.3 to 1.9 and from 5.9 to 7.0 in the human submucous plexus (SMP) and MP, respectively, whereas, in guinea pig, the glia index was 0.8-1.0 in the SMP and 1.7 in the MP. The glia index was the most robust quantitative descriptor within one species. This is a comprehensive set of quantitative EGC measures in man and guinea pig that provides a basis for pathological assessment of glial proliferation and/or degeneration in the diseased gut.

Funding information:
  • NIMH NIH HHS - MH078993(United States)

Tauopathy with paired helical filaments in an aged chimpanzee.

  • Rosen RF
  • J. Comp. Neurol.
  • 2008 Jul 20

Literature context:


Abstract:

An enigmatic feature of age-related neurodegenerative diseases is that they seldom, if ever, are fully manifested in nonhuman species under natural conditions. The neurodegenerative tauopathies are typified by the intracellular aggregation of hyperphosphorylated microtubule-associated protein tau (MAPT) and the dysfunction and death of affected neurons. We document the first case of tauopathy with paired helical filaments in an aged chimpanzee (Pan troglodytes). Pathologic forms of tau in neuronal somata, neuropil threads, and plaque-like clusters of neurites were histologically identified throughout the neocortex and, to a lesser degree, in allocortical and subcortical structures. Ultrastructurally, the neurofibrillary tangles consisted of tau-immunoreactive paired helical filaments with a diameter and helical periodicity indistinguishable from those seen in Alzheimer's disease. A moderate degree of Abeta deposition was present in the cerebral vasculature and, less frequently, in senile plaques. Sequencing of the exons and flanking intronic regions in the genomic MAPT locus disclosed no mutations that are associated with the known human hereditary tauopathies, nor any polymorphisms of obvious functional significance. Although the lesion profile in this chimpanzee differed somewhat from that in Alzheimer's disease, the copresence of paired helical filaments and Abeta-amyloidosis indicates that the molecular mechanisms for the pathogenesis of the two canonical Alzheimer lesions--neurofibrillary tangles and senile plaques--are present in aged chimpanzees.

Diversity in mammalian chiasmatic architecture: ipsilateral axons are deflected at glial arches in the prechiasmatic optic nerve of the eutherian Tupaia belangeri.

  • Knabe W
  • J. Comp. Neurol.
  • 2008 May 20

Literature context:


Abstract:

Permanent ipsilaterally projecting axons approach the chiasmatic midline in rodents but are confined to lateral parts of the optic chiasm in marsupials. Hence, principally different mechanisms were thought to underlie axon pathway choice in eutherian (placental) and marsupial mammals. First evidence of diversity in eutherian chiasmatic architecture came from studies in the newborn and adult tree shrew Tupaia belangeri (Jeffery et al. [1998] J. Comp. Neurol. 390:183-193). Here, as in marsupials, ipsilaterally projecting axons do not approach the midline. The present study aims to clarify how the developing tree shrew chiasm is organized, how glial cells are arranged therein, and the extent to which the tree shrew chiasm is similar to that of marsupials or other eutherians. By using routinely stained serial sections as well as immunohistochemistry with antibodies against glial fibrillary acidic protein, vimentin, and medium-molecular-weight neurofilament protein, we investigated chiasm formation from embryonic day 18 (E18) to birth (E43). From E22 onward, ipsilaterally projecting axons diverged from contralaterally projecting axons in prechiasmatic parts of the optic nerve. They made sharp turns when arriving at glial arches found at the transition from the optic nerve to the chiasm. Thus, during the ingrowth period of axons, Tupaia belangeri and marsupials have specialized glial arrays in common, which probably help to deflect ipsilaterally projecting axons to lateral parts of the chiasm. Our observations provide new evidence of diversity in eutherian chiasmatic architecture and identify Tupaia belangeri as an appropriate animal model for studies on the mechanisms underlying axon guidance in the developing chiasm of higher primates.

Funding information:
  • NIGMS NIH HHS - P41GM103490(United States)

Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse.

  • Benton RL
  • J. Comp. Neurol.
  • 2008 Mar 1

Literature context:


Abstract:

After traumatic spinal cord injury (SCI), disruption and plasticity of the microvasculature within injured spinal tissue contribute to the pathological cascades associated with the evolution of both primary and secondary injury. Conversely, preserved vascular function most likely results in tissue sparing and subsequent functional recovery. It has been difficult to identify subclasses of damaged or regenerating blood vessels at the cellular level. Here, adult mice received a single intravenous injection of the Griffonia simplicifolia isolectin B4 (IB4) at 1-28 days following a moderate thoracic (T9) contusion. Vascular binding of IB4 was maximally observed 7 days following injury, a time associated with multiple pathologic aspects of the intrinsic adaptive angiogenesis, with numbers of IB4 vascular profiles decreasing by 21 days postinjury. Quantitative assessment of IB4 binding shows that it occurs within the evolving lesion epicenter, with affected vessels expressing a temporally specific dysfunctional tight junctional phenotype as assessed by occludin, claudin-5, and ZO-1 immunoreactivities. Taken together, these results demonstrate that intravascular lectin delivery following SCI is a useful approach not only for observing the functional status of neovascular formation but also for definitively identifying specific subpopulations of reactive spinal microvascular elements.

Funding information:
  • NINDS NIH HHS - R01 NS087988(United States)

Deletion of alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse formation.

  • Dudanova I
  • J. Comp. Neurol.
  • 2007 May 10

Literature context:


Abstract:

Alpha-neurexins are synaptic cell-surface molecules that are required for Ca(2+)-triggered exocytosis. Mice lacking all three alpha-neurexins show drastically reduced neurotransmitter release at excitatory and inhibitory synapses and die early postnatally. Although previous histological analysis of newborn alpha-neurexin triple mutants revealed only a moderate reduction in the density of type II synapses in the brainstem, cell culture studies proposed that neurexins are prominently involved in synapse formation. To assess the contribution of alpha-neurexins to the formation and structural properties of synapses in vivo, we performed a detailed morphological analysis of the brains from surviving adult double knockout mice lacking two of the three alpha-neurexins. Despite their impaired neurotransmission, we did not observe any gross anatomical defects or changes in the distribution of synaptic proteins in adult mutants. Only mild structural alterations were found: a approximately 20% reduction of neuropil area in many brain regions, resulting predominantly from shortened distal dendritic branches and fewer spines, as demonstrated by Golgi impregnation of pyramidal neurons. Quantitative electron microscopy revealed ultrastructurally normal type I and II terminals and a approximately 30% decrease in the density of type II synapses in the neocortex. To exclude errors in pathfinding, we investigated axonal projections in the olfactory bulb of newborn knockouts and did not observe any changes. Therefore, alpha-neurexins are not essential for the formation of the vast majority of synapses in vivo but rather regulate the function of these synapses.

Funding information:
  • NCRR NIH HHS - P40 RR012546(United States)

Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat.

  • Pecchi E
  • J. Comp. Neurol.
  • 2007 Mar 20

Literature context:


Abstract:

The dorsal vagal complex (DVC), an integrative center of autonomic functions located dorsally in the caudal brainstem, comprises the nucleus tractus solitarius (NTS), the area postrema (AP), and the dorsal motor nucleus of the vagus nerve (DMNX). Recently, this area of the brainstem was shown to retain, during adulthood, the expression of developmental markers, which is consistent with several forms of morphological and functional plasticity. These data led us to attempt to determine the structural organization and phenotypical characteristics of the astroglial compartment in the adult DVC. We report a strikingly high density of glial fibrillary acidic protein (GFAP) immunoreactive cells in the NTS and the DMNX compared to other brainstem structures. Furthermore, we observed a subpopulation of atypical GFAP+ cells in the NTS. These cells expressed vimentin and nestin and displayed unbranched processes that radiate rostrocaudally from cuboid cell bodies located in the 4th ventricle wall. Interestingly, these radiating cells were found in close association with neural progenitors whose proliferation was stimulated by intracerebroventricular injection of epidermal growth factor/basic fibroblast growth factor or lesion of the vagus nerve. Newly born neurons in the NTS identified by doublecortin (DCX) immunolabeling were also preferentially found in the vicinity of the radiating cells. Altogether, these results indicate that the adult NTS retains, during adulthood, astroglial cells that display morphological and phenotypical features seen during development. The overlap in the distribution of proliferative neural progenitors, newborn neurons, and radiating GFAP-positive cells suggest a possible role of the glial compartment of the NTS in functional plasticity in this structure.

Funding information:
  • NINDS NIH HHS - R03 NS071442(United States)

Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved.

  • Pineau I
  • J. Comp. Neurol.
  • 2007 Jan 10

Literature context:


Abstract:

We have studied the spatial and temporal distribution of six proinflammatory cytokines and identified their cellular source in a clinically relevant model of spinal cord injury (SCI). Our findings show that interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF) are rapidly (<5 and 15 minutes, respectively) and transiently expressed in mice following contusion. At 30-45 minutes post SCI, IL-1beta and TNF-positive cells could already be seen over the entire spinal cord segment analyzed. Multilabeling analyses revealed that microglia and astrocytes were the two major sources of IL-1beta and TNF at these times, suggesting a role for these cytokines in gliosis. Results obtained from SCI mice previously transplanted with green fluorescent protein (GFP)-expressing hematopoietic stem cells confirmed that neural cells were responsible for the production of IL-1beta and TNF for time points preceding 3 hours. From 3 hours up to 24 hours, IL-1beta, TNF, IL-6, and leukemia inhibitory factor (LIF) were strongly upregulated within and immediately around the contused area. Colocalization studies revealed that all populations of central nervous system resident cells, including neurons, synthesized cytokines between 3 and 24 hours post SCI. However, work done with SCI-GFP chimeric mice revealed that at least some infiltrating leukocytes were responsible for cytokine production from 12 hours on. By 2 days post-SCI, mRNA signal for all the above cytokines had nearly disappeared. Notably, we also observed another wave of expression for IL-1beta and TNF at 14 days. Overall, these results indicate that following SCI, all classes of neural cells initially contribute to the organization of inflammation, whereas recruited immune cells mostly contribute to its maintenance at later time points.

Funding information:
  • Howard Hughes Medical Institute - 5U24CA143858(United States)
  • NEI NIH HHS - R01-EY12654(United States)

Differential response of arcuate proopiomelanocortin- and neuropeptide Y-containing neurons to the lesion produced by gold thioglucose administration.

  • Homma A
  • J. Comp. Neurol.
  • 2006 Nov 1

Literature context:


Abstract:

The effect of gold thioglucose (GTG) administration on neurons containing feeding-related peptides in the hypothalamic arcuate nucleus was examined in mice. Intraperitoneal GTG injection increased the body weight and produced a hypothalamic lesion that extended from the ventral part of the ventromedial nucleus to the dorsal part of the arcuate nucleus. Neurons containing proopiomelanocortin (POMC) and neuropeptide Y (NPY) present in the dorsal part of the arcuate nucleus were destroyed by GTG. In addition, the peptide-containing fibers that extended from the remaining arcuate neurons were degenerated at the lesion site. The number of POMC-containing fibers in the paraventricular nucleus, dorsomedial nucleus, and lateral hypothalamus was found to have decreased significantly when examined at 2 days and 2 weeks after the GTG treatment. In contrast, the number of NPY-containing fibers in the lateral hypothalamus remained unchanged after the GTG treatment, probably because of the presence of an unaffected NPY-containing fiber pathway passing through the tuberal region and projecting onto the lateral hypothalamus. The number of NPY-immunoreactive fibers in the paraventricular and dorsomedial nuclei showed a moderate but significant decrease at 2 days after the GTG treatment, but it recovered to the normal levels 2 weeks later. The NPY-containing fibers were found to have regenerated across the lesion site 2 weeks later, and this might contribute to the recovery of the NPY-immunoreactive fibers in these regions. The present results first demonstrate that POMC- and NPY-containing neurons in the arcuate nucleus respond differently to the lesion produced by the GTG treatment.

Funding information:
  • NEI NIH HHS - EY11105(United States)
  • NIGMS NIH HHS - R01-GM65466-01(United States)

Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures.

  • Nagata I
  • J. Comp. Neurol.
  • 2006 Nov 10

Literature context:


Abstract:

To identify structures that determine the 90 degree orientation of thin espalier dendritic trees of Purkinje cells with respect to parallel fibers (axonal neurite bundles of granule cells) in the cerebellar cortex, we designed five types of two-dimensional and three-dimensional cell and tissue cultures of cerebella from postnatal mice and analyzed the orientation of Purkinje cell dendrites with respect to neurite bundles and astrocyte fibers by immunofluorescence double or triple staining. We cultured dissociated cerebellar cells on micropatterned substrates and preformed neurite bundles of a microexplant culture two-dimensionally and in matrix gels three-dimensionally. Dendrites, but not axons, of Purkinje cells extended toward the neurites of granule cells and oriented at right angles two-dimensionally to aligned neurite bundles in the three cultures. In a more organized explant proper of the microexplant culture, Purkinje cell dendrites extended toward thin aligned neurite bundles not only consistently at right angles but also two-dimensionally. However, in the "organotypic microexplant culture," in which three-dimensionally aligned thick neurite bundles mimicking parallel fibers were produced, Purkinje cell dendrites often oriented perpendicular to the thick bundles three-dimensionally. Astrocytes were abundant in all cultures, and there was no definite correlation between the presence of and orientation to Purkinje cell dendrites, although their fibers were frequently associated in parallel with dendrites in the organotypic microexplant culture. Therefore, Purkinje cells may grow their dendrites to the newly produced neurite bundles of parallel fibers in the cerebellar cortex and be oriented at right angles three-dimensionally mainly via "perpendicular contact guidance."

Funding information:
  • NIMH NIH HHS - MH-61869(United States)

Cellular composition and cytoarchitecture of the rabbit subventricular zone and its extensions in the forebrain.

  • Ponti G
  • J. Comp. Neurol.
  • 2006 Oct 1

Literature context:


Abstract:

Persistent neurogenic sites, harboring neurogenic progenitor cells, which give rise to neuronal precursors throughout life, occur in different mammals, including humans. The telencephalic subventricular zone (SVZ) is the most active adult neurogenic site. Despite remarkable knowledge of its anatomical and cellular composition in rodents, detailed arrangement of SVZ in other mammals is poorly understood, yet comparative studies suggest that differences might exist. Here, by analyzing the cellular composition/arrangement in the SVZ of postnatal, young, and adult rabbits, we found a remarkably heterogeneous distribution of its chain and glia compartments. Starting from postnatal stages, this heterogeneity leads to a distinction between a ventricular SVZ and an abventricular SVZ, whereby the former contains small chains and isolated neuroblasts and the latter is characterized by large chains and a loose astrocytic meshwork. In addition to analysis of the SVZ proper, attention has been focused on its extensions, called parenchymal chains. Anterior parenchymal chains are compact chains surrounded by axon bundles and frequently establish direct contact with blood vessels. Posterior parenchymal chains are less compact, being squeezed between gray and white matter. In the shift from neonatal to adult rabbit SVZ, chains occur very early, both in the SVZ and within the brain parenchyma. Comparison of these results with the pattern in rodents reveals different types of chains, displaying a variety of relationships with glia or other substrates in vivo, an issue that might be important in understanding differences in the adaptation of persistent germinative layers to different mammalian brain anatomies.

Funding information:
  • Canadian Institutes of Health Research - (Canada)

Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse.

  • Baker KL
  • J. Comp. Neurol.
  • 2006 Oct 20

Literature context:


Abstract:

The MRL mouse is unique in its capacity for regenerative healing of wounds. This regenerative ability includes complete closure, with little scarring, of wounds to the ear pinna and repair of cardiac muscle, without fibrosis, following cryoinjury. Here, we examine whether neurogenic zones within the MRL brain show enhanced regenerative capacity. The largest neurogenic zone in the adult brain, the subventricular zone (SVZ), lies adjacent to the lateral wall of the lateral ventricle and is responsible for replacement of interneuron populations within the olfactory bulb. Initial gross observation of the anterior forebrain in MRL mice revealed enlarged lateral ventricles; however, little neurodegeneration was detected within the SVZ or surrounding tissues. Instead, increased proliferation within the SVZ was observed, based on incorporation of the thymidine analogue bromodeoxyuridine. Closer examination using electron microscopy revealed that a significant number of SVZ astrocytes interpolated within the ependyma and established contact with the ventricle. In addition, subependymal, protuberant nests of cells, consisting primarily of neuroblasts, were found along the anterior SVZ of MRL mice. Whole mounts of the lateral wall of the lateral ventricle stained for the neuroblast marker doublecortin revealed normal formation of chains of migratory neuroblasts along the entire wall and introduction of enhanced green fluorescent protein-tagged retrovirus into the lateral ventricles confirmed that newly generated neuroblasts were able to track into the olfactory bulb.

Funding information:
  • NCI NIH HHS - RL1 CA133834(United States)

EphA4 regulates central nervous system vascular formation.

  • Goldshmit Y
  • J. Comp. Neurol.
  • 2006 Aug 20

Literature context:


Abstract:

Molecules involved in axon guidance have recently also been shown to play a role in blood vessel guidance. To examine whether axon guidance molecules, such as the EphA4 receptor tyrosine kinase, might also play a role in development of the central nervous system (CNS) vasculature and repair following CNS injury, we examined wild-type and EphA4 null mutant (-/-) mice. EphA4-/- mice exhibited an abnormal CNS vascular structure in both the cerebral cortex and the spinal cord, with disorganized branching and a 30% smaller diameter. During development, EphA4 was expressed on endothelial cells. This pattern of expression was not maintained in the adult. After spinal cord injury in wild-type mice, expression of EphA4 was markedly up-regulated on activated astrocytes, many of which were tightly associated with blood vessels. In EphA4-/- spinal cord following injury, astrocytes were not as tightly associated with blood vessels as the wild-type astrocytes. In uninjured EphA4-/- mice, the blood-brain barrier (BBB) appeared normal, but it showed prolonged leakage following spinal cord injury. These results support a role for EphA4 in CNS vascular formation and guidance during development and an additional role in BBB repair.

Funding information:
  • NCRR NIH HHS - UL1 RR024975(United States)

Damage of serotonergic axons and immunolocalization of Hsp27, Hsp72, and Hsp90 molecular chaperones after a single dose of MDMA administration in Dark Agouti rat: temporal, spatial, and cellular patterns.

  • Adori C
  • J. Comp. Neurol.
  • 2006 Jul 10

Literature context:


Abstract:

3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") causes long-term disturbance of the serotonergic system. We examined the temporal, spatial, and cellular distribution of three molecular chaperones, Hsp27, Hsp72, and Hsp90, 3 and 7 days after treatment with 7.5, 15, and 30 mg/kg single intraperitoneal (i.p.) doses of MDMA in Dark Agouti rat brains. Furthermore, we compared the immunostaining patterns of molecular chaperones with serotonergic axonal-vulnerability evaluated by tryptophan-hydroxylase (TryOH) immunoreactivity and with astroglial-activation detected by GFAP-immunostaining. There was a marked reduction in TryOH-immunoreactive axon density after MDMA treatment in all examined areas at both time points. Three days after treatment, a significant dose-dependent increase in Hsp27-immunoreactive protoplasmic astrocytes was found in the cingulate, frontal, occipital, and pyriform cortex, and in the hippocampus CA1. However, there was no increase in astroglial Hsp27-immunoreactivity in the caudate putamen, lateral septal nucleus, or anterior hypothalamus. A significant increase in the GFAP immunostaining density of protoplasmic astrocytes was found only in the hippocampus CA1. In addition, numerous strong Hsp72-immunopositive neurons were found in some brain areas only 3 days after treatment with 30 mg/kg MDMA. Increased Hsp27-immunoreactivity exclusively in the examined cortical areas reveals that Hsp27 is a sensitive marker of astroglial response to the effects of MDMA in these regions of Dark Agouti rat brain and suggests differential responses in astroglial Hsp27-expression between distinct brain areas. The co-occurrence of Hsp27 and GFAP response exclusively in the hippocampus CA1 may suggest the particular vulnerability of this region. The presence of strong Hsp72-immunopositive neurons in certain brain areas may reflect additional effects of MDMA on nonserotonergic neurons.

Funding information:
  • NHGRI NIH HHS - 1P41 HG 02371-01(United States)

Development of the neural retina and its vasculature in the marmoset Callithrix jacchus.

  • Hendrickson A
  • J. Comp. Neurol.
  • 2006 Jul 10

Literature context:


Abstract:

The morphological sequence of retinal development in the New World marmoset monkey Callithrix jacchus is similar to previous reports in Macaca and humans. The incipient fovea is present at fetal day (Fd) 100 as the only part of the retina that contains five distinct layers, including a single layer of cone photoreceptors. A foveal pit begins to form at Fd 135 in the center of the foveal avascular zone which is surrounded by a ring of blood vessels (BV) and astrocytes. At birth (Fd 144) the fovea has a single layer of cones over the pit center where the inner retinal layers are thinned but still separated. After birth the fovea rapidly matures so that foveal cone and pit morphology are similar to adult by 4 months. Five distinct layers and the BV plexus in the nerve fiber layer are present to the retinal edge in neonatal marmosets. Near the optic disc BV are sprouting into outer retinal layers at birth and vascularization of the outer retina is completed by 2 to 3 months. Retinal length increases sharply up to Fd 135, but undergoes a quiescent period around birth during which pit formation begins. Length then increases again up to 4mo, followed by a slow increase into adulthood. The postnatal increase is accompanied by a marked thinning of the peripheral retina. The pars plana appears after birth and its length increases at least until 2 years of age. The major difference between marmoset and Macaca is the relative immaturity of the marmoset fovea at birth, and its rapid development after birth. This makes the marmoset a good candidate for neonatal experimental manipulation of retinal and eye development.

Funding information:
  • NIAAA NIH HHS - R01 AA-12677(United States)