Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Influence of PDGF-BB on proliferation and transition through the MyoD-myogenin-MEF2A expression program during myogenesis in mouse C2 myoblasts.

Growth factors (Chur, Switzerland) | 1997

We have previously demonstrated that PDGF-BB enhances proliferation of C2 myoblasts. This has led us to examine whether the mitogenic influence of PDGF-BB in the C2 model correlates with modulation of specific steps associated with myogenic differentiation. C2 myoblasts transiting through these differentiation specific steps were monitored via immunocytochemistry. We show that the influence of PDGF on enhancing cell proliferation correlates with a delay in the emergence of cells positive for sarcomeric myosin. We further monitored the influence of PDGF-BB on differentiation steps preceding the emergence of myosin+ cells. We demonstrate that mononucleated C2 cells first express MyoD (MyoD+/myogenin- cells) and subsequently, myogenin. Cells negative for both MyoD and myogenin (the phenotype preceding the MyoD+ state) were present at all times in culture and comprised the majority, if not all, of the cells which responded mitogenically to PDGF. Additionally, the frequency of the MyoD+/myogenin+ cell phenotype was reduced in cultures receiving PDGF, suggesting that PDGF can modulate the transition of the cells into the myogenin+ state. We determined that many of the myogenin+ cells subsequently become MEF2A+ and this phenomenon is not influenced by PDGF-BB. FGF-2 also enhanced the proliferation of C2 myoblasts and suppressed the appearance of the myogenin+ cells, but did not influence the subsequent transition into the MEF2A+ state. The study raises the possibility that PDGF-BB and FGF-2 might delay the transition of the C2 cells into the MyoD+/myogenin+ state by depressing a paracrine signal that enhances differentiation.

Pubmed ID: 9401815 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

  • Agency: NIA NIH HHS, United States
    Id: R01 AG013798
  • Agency: NIAMS NIH HHS, United States
    Id: R29 AR039677
  • Agency: NIA NIH HHS, United States
    Id: AG13798

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.