Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Altering cortical input unmasks synaptic phenotypes in the YAC128 cortico-striatal co-culture model of Huntington disease.

BMC biology | 2018

Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG expansion in the huntingtin (HTT) gene, leading to selective and progressive neuronal death predominantly in the striatum. Mutant HTT expression causes dysfunctional cortico-striatal (CS) transmission, loss of CS synapses, and striatal medium spiny neuron (MSN) dendritic spine instability prior to neuronal death. Co-culturing cortical and striatal neurons in vitro promotes the formation of functional CS synapses and is a widely used approach to elucidate pathogenic mechanisms of HD and to validate potential synapto-protective therapies. A number of relevant in vivo synaptic phenotypes from the YAC128 HD mouse model, which expresses full-length transgenic human mutant HTT, are recapitulated in CS co-culture by 21 days in vitro (DIV). However, striatal spine loss, which occurs in HD patients and in vivo animal models, has been observed in YAC128 CS co-culture in some studies but not in others, leading to difficulties in reproducing and interpreting results. Here, we investigated whether differences in the relative proportion of cortical and striatal neurons alter YAC128 synaptic phenotypes in this model.

Pubmed ID: 29945611 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


pClamp (tool)

RRID:SCR_011323

Software suite for electrophysiology data acquisition and analysis by Molecular Devices. Used for the control and recording of voltage clamp, current clamp, and patch clamp experiments. The software suite consists of Clampex 11 Software for data acquisition, AxoScope 11 Software for background recording, Clampfit 11 Software for data analysis, and optional Clampfit Advanced Analysis Module for sophisticated and streamlined analysis.

View all literature mentions

NeuronStudio (tool)

RRID:SCR_013798

A software application which allows reconstruction of neuronal structures from confocal and multi-photon images. NeuronStudio provides tools for manual, semi-manual, and automatic tracing of the dendritic arbor, as well as manual and automatic detection and classification of dendritic spines. Advanced 2D and 3D visualization techniques facilitate the verification of the reconstruction, as well as allowing accurate manual editing. The most current version is Version 0.9.92 which was last updated on November 19, 2009.

View all literature mentions

Adobe Photoshop (tool)

RRID:SCR_014199

Software for image processing, analysis, and editing. The software includes features such as touch capabilities, a customizable toolbar, 2D and 3D image merging, and Cloud access and options.

View all literature mentions

FVB/NJ (tool)

RRID:IMSR_JAX:001800

Mus musculus with name FVB/NJ from IMSR.

View all literature mentions

Mouse/Rat DARPP-32 MAb (Clone 375604) (antibody)

RRID:AB_2169021

This monoclonal targets Mouse/Rat DARPP-32 MAb (Clone 375604)

View all literature mentions

Mouse/Rat DARPP-32 MAb (Clone 375604) (antibody)

RRID:AB_2169021

This monoclonal targets Mouse/Rat DARPP-32 MAb (Clone 375604)

View all literature mentions