Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cannabinoid Receptor Type 1 Agonist ACEA Protects Neurons from Death and Attenuates Endoplasmic Reticulum Stress-Related Apoptotic Pathway Signaling.

Neurotoxicity research | 2018

Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.

Pubmed ID: 29134561 RIS Download

Associated grants

  • Agency: Fundação de Amparo à Pesquisa do Estado de São Paulo, International
    Id: 2014/06372-0
  • Agency: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, International
    Id: 1279985
  • Agency: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, International
    Id: 1233360

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GAPDH (6C5) (antibody)

RRID:AB_627679

This monoclonal targets GAPDH (6C5)

View all literature mentions

Caspase-12 Antibody (antibody)

RRID:AB_2069200

This polyclonal targets Casp12

View all literature mentions

CHOP (L63F7) Mouse mAb (antibody)

RRID:AB_2089254

This monoclonal targets CHOP

View all literature mentions

Phospho-eIF2alpha (Ser51) (D9G8) XP Rabbit mAb (antibody)

RRID:AB_2096481

This monoclonal targets eIF2alpha (Ser51)

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

Neuro-2a (cell line)

RRID:CVCL_0470

Cell line Neuro-2a is a Cancer cell line with a species of origin Mus musculus

View all literature mentions