Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Identification of Two Classes of Somatosensory Neurons That Display Resistance to Retrograde Infection by Rabies Virus.

Glycoprotein-deleted rabies virus-mediated monosynaptic tracing has become a standard method for neuronal circuit mapping, and is applied to virtually all parts of the rodent nervous system, including the spinal cord and primary sensory neurons. Here we identified two classes of unmyelinated sensory neurons (nonpeptidergic and C-fiber low-threshold mechanoreceptor neurons) resistant to direct and trans-synaptic infection from the spinal cord with rabies viruses that carry glycoproteins in their envelopes and that are routinely used for infection of CNS neurons (SAD-G and N2C-G). However, the same neurons were susceptible to infection with EnvA-pseudotyped rabies virus in tumor virus A receptor transgenic mice, indicating that resistance to retrograde infection was due to impaired virus adsorption rather than to deficits in subsequent steps of infection. These results demonstrate an important limitation of rabies virus-based retrograde tracing of sensory neurons in adult mice, and may help to better understand the molecular machinery required for rabies virus spread in the nervous system. In this study, mice of both sexes were used.SIGNIFICANCE STATEMENT To understand the neuronal bases of behavior, it is important to identify the underlying neural circuitry. Rabies virus-based monosynaptic tracing has been used to identify neuronal circuits in various parts of the nervous system. This has included connections between peripheral sensory neurons and their spinal targets. These connections form the first synapse in the somatosensory pathway. Here we demonstrate that two classes of unmyelinated sensory neurons, which account for >40% of dorsal root ganglia neurons, display resistance to rabies infection. Our results are therefore critical for interpreting monosynaptic rabies-based tracing in the sensory system. In addition, identification of rabies-resistant neurons might provide a means for future studies addressing rabies pathobiology.

Pubmed ID: 28951448 RIS Download

Mesh terms: Animals | Female | Ganglia, Spinal | Male | Mice | Mice, Inbred C57BL | Mice, Transgenic | Nerve Net | Neuroanatomical Tract-Tracing Techniques | Posterior Horn Cells | Rabies virus | Sensory Receptor Cells

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Addgene

A non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. They work with laboratories to assemble a high-quality library of published and useful plasmids and their associated cloning/sequence data for use in research and discovery. By linking plasmids with articles, scientists can always find data related to the materials they request. There is no cost to deposit plasmids to Addgene and it will store samples in triplicate (including one at an offsite backup facility), sequence key regions for validation, and handle the appropriate Material Transfer Agreements (MTAs) with institutions. Additionally, users can create a webpage that directs scientists to request plasmids. Material Transfer Agreements (MTAs) allow open exchange to occur because they offer intellectual property and liability protection for material providers. Institutions that have deposited materials at Addgene require a MTA for each transfer of material.

tool

View all literature mentions