Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Osmotic and heat stress-dependent regulation of MLK4β and MLK3 by the CHIP E3 ligase in ovarian cancer cells.

Cellular signalling | 2017

Mixed Lineage Kinase 3 (MLK3), a member of the MLK subfamily of protein kinases, is a mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) that activates MAPK signalling pathways and regulates cellular responses such as proliferation, invasion and apoptosis. MLK4β, another member of the MLK subfamily, is less extensively studied, and the regulation of MLK4β by stress stimuli is not known. In this study, the regulation of MLK4β and MLK3 by osmotic stress, thermostress and heat shock protein 90 (Hsp90) inhibition was investigated in ovarian cancer cells. MLK3 and MLK4β protein levels declined under conditions of prolonged osmotic stress, heat stress or exposure to the Hsp90 inhibitor geldanamycin (GA); and MLK3 protein declined faster than MLK4β. Similar to MLK3, the reduction in MLK4β protein in cells exposed to heat or osmotic stresses occurred via a mechanism that involves the E3 ligase, carboxy-terminus of Hsc70-interacting protein (CHIP). Both heat shock protein 70 (Hsp70) and CHIP overexpression led to polyubiquitination and a decrease in endogenous MLK4β protein, and MLK4β was ubiquitinated by CHIP in vitro. In untreated cells and cells exposed to osmotic and heat stresses for short time periods, small interfering RNA (siRNA) knockdown of MLK4β elevated the levels of activated MLK3, c-Jun N-terminal kinase (JNK) and p38 MAPKs. Furthermore, MLK3 binds to MLK4β, and this association is regulated by osmotic stress. These results suggest that in the early response to stressful stimuli, MLK4β-MLK3 binding is important for regulating MLK3 activity and MAPK signalling, and after prolonged periods of stress exposure, MLK4β and MLK3 proteins decline via CHIP-dependent degradation. These findings provide insight into how heat and osmotic stresses regulate MLK4β and MLK3, and reveal an important function for MLK4β in modulating MLK3 activity in stress responses.

Pubmed ID: 28757353 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R15 CA199164
  • Agency: NIGMS NIH HHS, United States
    Id: R15 GM102831

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Novus Biologicals (tool)

RRID:SCR_004286

Commercial antibody vendor which supplies antibodies and other products to life science researchers.

View all literature mentions

BD Biosciences (tool)

RRID:SCR_013311

An Antibody supplier

View all literature mentions