Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury.

eNeuro | Oct 27, 2017

Plastic changes in the CNS in response to peripheral sensory nerve injury are a series of complex processes, ranging from local circuit remodeling to somatotopic reorganization. However, the link between circuit remodeling and somatotopic reorganization remains unclear. We have previously reported that transection of the primary whisker sensory nerve causes the abnormal rewiring of lemniscal fibers (sensory afferents) on a neuron in the mouse whisker sensory thalamus (V2 VPM). In the present study, using transgenic mice whose lemniscal fibers originate from the whisker sensory principle trigeminal nucleus (PrV2) are specifically labeled, we identified that the transection induced retraction of PrV2-originating lemniscal fibers and invasion of those not originating from PrV2 in the V2 VPM. This anatomical remodeling with somatotopic reorganization was highly correlated with the rewiring of lemniscal fibers. Origins of the non-PrV2-origin lemniscal fibers in the V2 VPM included the mandibular subregion of trigeminal nuclei and the dorsal column nuclei (DCNs), which normally represent body parts other than whiskers. The transection also resulted in ectopic receptive fields of V2 VPM neurons and extraterritorial pain behavior on the uninjured mandibular region of the face. The anatomical remodeling, emergence of ectopic receptive fields, and extraterritorial pain behavior all concomitantly developed within a week and lasted more than three months after the transection. Our findings, thus, indicate a strong linkage between these plastic changes after peripheral sensory nerve injury, which may provide a neural circuit basis underlying large-scale reorganization of somatotopic representation and abnormal ectopic sensations.

Pubmed ID: 28396882 RIS Download

Mesh terms: Afferent Pathways | Animals | Disease Models, Animal | Excitatory Postsynaptic Potentials | Facial Pain | Female | Hyperalgesia | Male | Mandible | Mice, Inbred C57BL | Mice, Transgenic | Miniature Postsynaptic Potentials | Neuronal Plasticity | Peripheral Nerve Injuries | Sensory Receptor Cells | Thalamus | Touch | Trigeminal Nuclei | Vibrissae

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


R Project for Statistical Computing

Software environment and programming language for statistical computing and graphics that provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, etc) and graphical techniques. R is an integrated suite of software facilities for data manipulation, calculation and graphical display.

tool

View all literature mentions

IGOR Pro

Software used for visualizing and graphing data, image processing, and programming. It is designed for use by scientists and engineers and supports large data sets, evenly spaced data, and various data import formats. The software includes a suite of image processing operations for image filtering, manipulation, and quantification and is completely programmable.

tool

View all literature mentions

ImageJ

Software tool as an open source Java-based image processing program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

tool

View all literature mentions

MATLAB

A multi-paradigm numerical computing environment and fourth-generation programming language. It allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. (Adapted from Wikipedia) The high-level language and interactive environment lets you explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

tool

View all literature mentions

Spike2 Software

A data acquisition and analysis software package for electrophysiology data. Spike2 software offers multi-channel continuous data acquisition and analysis with a multitude of options. This offers flexible usage from a simple chart recorder to complex applications requiring stimulus generation, data capture, scrolling or triggered displays, control of external equipment, and custom analysis. Spike2 software can be used in many fields such as electrophysiology, neurophysiology, cardiovascular and respiratory studies, sports science and pharmacology.

tool

View all literature mentions

Adobe Photoshop

Software for image processing, analysis, and editing. The software includes features such as touch capabilities, a customizable toolbar, 2D and 3D image merging, and Cloud access and options.

tool

View all literature mentions

ZEN Digital Imaging for Light Microscopy

User interface software for Carl Zeiss light microscopy imaging systems. After selecting a fluorophore, ZEN applies the necessary settings to collect and organize data.

tool

View all literature mentions

OmniPlex Software

Neural data acquisition software for signal visualization in neuron recordings along with spike wave-form classification methods. It is made up of the PlexControl software program and the OmniPlex Server.

tool

View all literature mentions

G*Power

Data analytics software to compute statistical power analyses for many commonly used statistical tests in social and behavioral research. It can also be used to compute effect sizes and to graphically display the results of power analyses.

tool

View all literature mentions

Neurolucida

Neurolucida is advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping, and morphometry. Since its debut more than 20 years ago, Neurolucida has continued to evolve and has become the worldwide gold-standard for neuron reconstruction and 3D mapping. Neurolucida has the flexibility to handle data in many formats: using live images from digital or video cameras; stored image sets from confocal microscopes, electron microscopes, and scanning tomographic sources, or through the microscope oculars using the patented LucividTM. Neurolucida controls a motorized XYZ stage for integrated navigation through tissue sections, allowing for sophisticated analysis from many fields-of-view. Neurolucidas Serial Section Manager integrates unlimited sections into a single data file, maintaining each section in aligned 3D space for full quantitative analysis. Neurolucidas neuron tracing capabilities include 3D measurement and reconstruction of branching processes. Neurolucida also features sophisticated tools for mapping delineate and map anatomical regions for detailed morphometric analyses. Neurolucida uses advanced computer-controlled microscopy techniques to obtain accurate results and speed your work. Plug-in modules are available for confocal and MRI analysis, 3D solid modeling, and virtual slide creation. The user-friendly interface gives you rapid results, allowing you to acquire data and capture the full 3D extent of neurons and brain regions. You can reconstruct neurons or create 3D serial reconstructions directly from slides or acquired images, and Neurolucida offers full microscope control for brightfield, fluorescent, and confocal microscopes. Its added compatibility with 64-bit Microsoft Vista enables reconstructions with even larger images, image stacks, and virtual slides. Adding the Solid Modeling Module allows you to rotate and view your reconstructions in real time. Neurolucida is available in two separate versions Standard and Workstation. The Standard version enables control of microscope hardware, whereas the Workstation version is used for offline analysis away from the microscope. Neurolucida provides quantitative analysis with results presented in graphical or spreadsheet format exportable to Microsoft Excel. Overall, features include: - Tracing Neurons - Anatomical Mapping - Image Processing and Analysis Features - Editing - Morphometric Analysis - Hardware Integration - Cell Analysis - Visualization Features Sponsors: Neurolucida is supported by MBF Bioscience.

tool

View all literature mentions