Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Context-specific activation of hippocampus and SN/VTA by reward is related to enhanced long-term memory for embedded objects.

Neurobiology of learning and memory | 2016

Animal studies indicate that hippocampal representations of environmental context modulate reward-related processing in the substantia nigra and ventral tegmental area (SN/VTA), a major origin of dopamine in the brain. Using functional magnetic resonance imaging (fMRI) in humans, we investigated the neural specificity of context-reward associations under conditions where the presence of perceptually similar neutral contexts imposed high demands on a putative hippocampal function, pattern separation. The design also allowed us to investigate how contextual reward enhances long-term memory for embedded neutral objects. SN/VTA activity underpinned specific context-reward associations in the face of perceptual similarity. A reward-related enhancement of long-term memory was restricted to the condition where the rewarding and the neutral contexts were perceptually similar, and in turn was linked to co-activation of the hippocampus (subfield DG/CA3) and SN/VTA. Thus, an ability of contextual reward to enhance memory for focal objects is closely linked to context-related engagement of hippocampal-SN/VTA circuitry.

Pubmed ID: 26708279 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 091593
  • Agency: Wellcome Trust, United Kingdom
    Id: 098362

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MRIcron (tool)

RRID:SCR_002403

Software tool as a cross-platform NIfTI format image viewer. Used for viewing and exporting of brain images. MRIcroGL is a variant of MRIcron.

View all literature mentions

NEURON (tool)

RRID:SCR_005393

NEURON is a simulation environment for modeling individual neurons and networks of neurons. It provides tools for conveniently building, managing, and using models in a way that is numerically sound and computationally efficient. It is particularly well-suited to problems that are closely linked to experimental data, especially those that involve cells with complex anatomical and biophysical properties. NEURON has benefited from judicious revision and selective enhancement, guided by feedback from the growing number of neuroscientists who have used it to incorporate empirically-based modeling into their research strategies. NEURON's computational engine employs special algorithms that achieve high efficiency by exploiting the structure of the equations that describe neuronal properties. It has functions that are tailored for conveniently controlling simulations, and presenting the results of real neurophysiological problems graphically in ways that are quickly and intuitively grasped. Instead of forcing users to reformulate their conceptual models to fit the requirements of a general purpose simulator, NEURON is designed to let them deal directly with familiar neuroscience concepts. Consequently, users can think in terms of the biophysical properties of membrane and cytoplasm, the branched architecture of neurons, and the effects of synaptic communication between cells. * helps users focus on important biological issues rather than purely computational concerns * has a convenient user interface * has a user-extendable library of biophysical mechanisms * has many enhancements for efficient network modeling * offers customizable initialization and simulation flow control * is widely used in neuroscience research by experimentalists and theoreticians * is well-documented and actively supported * is free, open source, and runs on (almost) everything

View all literature mentions