Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1.

Nature structural & molecular biology | 2015

The circadian clock controls the transcription of hundreds of genes through specific chromatin-remodeling events. The histone methyltransferase mixed-lineage leukemia 1 (MLL1) coordinates recruitment of CLOCK-BMAL1 activator complexes to chromatin, an event associated with cyclic trimethylation of histone H3 Lys4 (H3K4) at circadian promoters. Remarkably, in mouse liver circadian H3K4 trimethylation is modulated by SIRT1, an NAD(+)-dependent deacetylase involved in clock control. We show that mammalian MLL1 is acetylated at two conserved residues, K1130 and K1133. Notably, MLL1 acetylation is cyclic, controlled by the clock and by SIRT1, and it affects the methyltransferase activity of MLL1. Moreover, H3K4 methylation at clock-controlled-gene promoters is influenced by pharmacological or genetic inactivation of SIRT1. Finally, levels of MLL1 acetylation and H3K4 trimethylation at circadian gene promoters depend on NAD(+) circadian levels. These findings reveal a previously unappreciated regulatory pathway between energy metabolism and histone methylation.

Pubmed ID: 25751424 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDA NIH HHS, United States
    Id: DA036408
  • Agency: NIA NIH HHS, United States
    Id: AG041504
  • Agency: NIGMS NIH HHS, United States
    Id: GM082634
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM081634
  • Agency: NIA NIH HHS, United States
    Id: R21 AG041504
  • Agency: NIDA NIH HHS, United States
    Id: R21 DA036408

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Gene Expression Omnibus (GEO) (tool)

RRID:SCR_005012

Functional genomics data repository supporting MIAME-compliant data submissions. Includes microarray-based experiments measuring the abundance of mRNA, genomic DNA, and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. Array- and sequence-based data are accepted. Collection of curated gene expression DataSets, as well as original Series and Platform records. The database can be searched using keywords, organism, DataSet type and authors. DataSet records contain additional resources including cluster tools and differential expression queries.

View all literature mentions

GeneTex (tool)

RRID:SCR_000069

An antibody supplier for the purposes of life science and biomedical research. This company has a wide variety of immunological reagents that focus on areas of research such as cancer, cell biology, epigenetics, immunology and infectious diseases.

View all literature mentions

Bethyl (tool)

RRID:SCR_013554

An Antibody supplier

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions