Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Factors required for activation of urease as a virulence determinant in Cryptococcus neoformans.

mBio | 2013

Urease in Cryptococcus neoformans plays an important role in fungal dissemination to the brain and causing meningoencephalitis. Although urea is not required for synthesis of apourease encoded by URE1, the available nitrogen source affected the expression of URE1 as well as the level of the enzyme activity. Activation of the apoenzyme requires three accessory proteins, Ure4, Ure6, and Ure7, which are homologs of the bacterial urease accessory proteins UreD, UreF, and UreG, respectively. A yeast two-hybrid assay showed positive interaction of Ure1 with the three accessory proteins encoded by URE4, URE6, and URE7. Metalloproteomic analysis of cryptococcal lysates using inductively coupled plasma mass spectrometry (ICP-MS) and a biochemical assay of urease activity showed that, as in many other organisms, urease is a metallocentric enzyme that requires nickel transported by Nic1 for its catalytic activity. The Ure7 accessory protein (bacterial UreG homolog) binds nickel likely via its conserved histidine-rich domain and appears to be responsible for the incorporation of Ni(2+) into the apourease. Although the cryptococcal genome lacks the bacterial UreE homolog, Ure7 appears to combine the functions of bacterial UreE and UreG, thus making this pathogen more similar to that seen with the plant system. Brain invasion by the ure1, ure7, and nic1 mutant strains that lack urease activity was significantly less effective in a mouse model. This indicated that an activated urease and not the Ure1 protein was responsible for enhancement of brain invasion and that the factors required for urease activation in C. neoformans resemble those of plants more than those of bacteria.

Pubmed ID: 23653445 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/H006605/1
  • Agency: Intramural NIH HHS, United States

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


DTU Center for Biological Sequence Analysis (tool)

RRID:SCR_003590

The Center for Biological Sequence Analysis of the Technical University of Denmark conducts basic research in the field of bioinformatics and systems biology and directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. A large number of computational methods have been produced, which are offered to others via WWW servers. Several data sets are also available. The center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. The on-line prediction services at CBS are available as interactive input forms. Most of the servers are also available as stand-alone software packages with the same functionality. In addition, for some servers, programmatic access is provided in the form of SOAP-based Web Services. The center also educates engineering students in biotechnology and systems biology and offers a wide range of courses in bioinformatics, systems biology, human health, microbiology and nutrigenomics.

View all literature mentions

Broad Institute (tool)

RRID:SCR_007073

Biomedical and genomic research center located in Cambridge, Massachusetts, United States. Nonprofit research organization under the name Broad Institute Inc., and is partners with Massachusetts Institute of Technology, Harvard University, and the five Harvard teaching hospitals. Dedicated to advance understanding of biology and treatment of human disease to improve human health.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions