2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Chronic expression of PPAR-delta by oligodendrocyte lineage cells in the injured rat spinal cord.

The Journal of comparative neurology | 2010

The transcription factor peroxisome proliferator-activated receptor (PPAR)-delta promotes oligodendrocyte differentiation and myelin formation in vitro and is prevalent throughout the brain and spinal cord. Its expression after injury, however, has not been examined. Thus, we used a spinal contusion model to examine the spatiotemporal expression of PPAR-delta in naïve and injured spinal cords from adult rats. As previously reported, PPAR-delta was expressed by neurons and oligodendrocytes in uninjured spinal cords; PPAR-delta was also detected in NG2 cells (potential oligodendrocyte progenitors) within the white matter and gray matter. After spinal cord injury (SCI), PPAR-delta mRNA and protein were present early and increased over time. Overall PPAR-delta+ cell numbers declined at 1 day post injury (dpi), likely reflecting neuron loss, and then rose through 14 dpi. A large proportion of NG2 cells expressed PPAR-delta after SCI, especially along lesion borders. PPAR-delta+ NG2 cell numbers were significantly higher than naive by 7 dpi and remained elevated through at least 28 dpi. PPAR-delta+ oligodendrocyte numbers declined at 1 dpi and then increased over time such that >20% of oligodendrocytes expressed PPAR-delta after SCI compared with approximately 10% in uninjured tissue. The most prominent increase in PPAR-delta+ oligodendrocytes was along lesion borders where at least a portion of newly generated oligodendrocytes (bromodeoxyuridine+) were PPAR-delta+. Consistent with its role in cellular differentiation, the early rise in PPAR-delta+ NG2 cells followed by an increase in new PPAR-delta+ oligodendrocytes suggests that this transcription factor may be involved in the robust oligodendrogenesis detected previously along SCI lesion borders.

Pubmed ID: 20058304 RIS Download

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: P30 NS045758
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS059776
  • Agency: NINDS NIH HHS, United States
    Id: NS059776
  • Agency: NINDS NIH HHS, United States
    Id: P30-NS045758

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.