2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses.

PloS one | 2009

Recent molecular genetics studies have suggested various trans-synaptic processes for pathophysiologic mechanisms of neuropsychiatric illnesses. Examination of pre- and post-synaptic scaffolds in the brains of patients would greatly aid further investigation, yet such an approach in human postmortem tissue has yet to be tested. We have examined three methods using density gradient based purification of synaptosomes followed by detergent extraction (Method 1) and the pH based differential extraction of synaptic membranes (Methods 2 and 3). All three methods separated fractions from human postmortem brains that were highly enriched in typical PSD proteins, almost to the exclusion of pre-synaptic proteins. We examined these fractions using electron microscopy (EM) and verified the integrity of the synaptic membrane and PSD fractions derived from human postmortem brain tissues. We analyzed protein composition of the PSD fractions using two dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) and observed known PSD proteins by mass spectrometry. Immunoprecipitation and immunoblot studies revealed that expected protein-protein interactions and certain posttranscriptional modulations were maintained in PSD fractions. Our results demonstrate that PSD fractions can be isolated from human postmortem brain tissues with a reasonable degree of integrity. This approach may foster novel postmortem brain research paradigms in which the stoichiometry and protein composition of specific microdomains are examined.

Pubmed ID: 19370153 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: R01 MH075916
  • Agency: NIEHS NIH HHS, United States
    Id: U01 ES016004
  • Agency: NIEHS NIH HHS, United States
    Id: P30 ES0135080
  • Agency: NIMH NIH HHS, United States
    Id: R01-MH-075916

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BioWorks (tool)

RRID:SCR_014594

A a configurable software package for peptide and protein mass spectrometry analyses. It includes the SEQUEST search algorithm to identify separate proteins in complex mixtures, interactive navigation tools to filter and sort protein summaries, customized spectral plots, and chromatograms using the PEPMATCH and PEPMAP tools. This software also has batch processing capabilities to improve throughput by queuing up several files, and custom-build proprietary databases, index databases, and retrieve databases through a public server.

View all literature mentions

Anti-PSD-95 Antibody (antibody)

RRID:AB_2292909

This monoclonal targets PSD 95

View all literature mentions