Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice.

American journal of physiology. Cell physiology | 2007

In cardiac-specific Na(+)-Ca(2+) exchanger (NCX) knockout (KO) mice, the ventricular action potential (AP) is shortened. The shortening of the AP, as well as a decrease of the L-type Ca(2+) current (I(Ca)), provides a critical mechanism for the maintenance of Ca(2+) homeostasis and contractility in the absence of NCX (Pott C, Philipson KD, Goldhaber JI. Excitation-contraction coupling in Na(+)-Ca(2+) exchanger knockout mice: reduced transsarcolemmal Ca(2+) flux. Circ Res 97: 1288-1295, 2005). To investigate the mechanism that underlies the accelerated AP repolarization, we recorded the transient outward current (I(to)) in patch-clamped myocytes isolated from wild-type (WT) and NCX KO mice. Peak I(to) was increased by 78% and decay kinetics were slowed in KO vs. WT. Consistent with increased I(to), ECGs from KO mice exhibited shortened QT intervals. Expression of the I(to)-generating K(+) channel subunit Kv4.2 and the K(+) channel interacting protein was increased in KO. We used a computer model of the murine AP (Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, and Rasmusson RL. Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287: 1378-1403, 2004) to determine the relative contributions of increased I(to), reduced I(Ca), and reduced NCX current (I(NCX)) on the shape and kinetics of the AP. Reduction of I(Ca) and elimination of I(NCX) had relatively small effects on the duration of the AP in the computer model. In contrast, AP repolarization was substantially accelerated when I(to) was increased in the computer model. Thus, the increase in I(to), and not the reduction of I(Ca) or I(NCX), is likely to be the major mechanism of AP shortening in KO myocytes. The upregulation of I(to) may comprise an important regulatory mechanism to limit Ca(2+) influx via a reduction of AP duration, thus preventing Ca(2+) overload in situations of reduced myocyte Ca(2+) extrusion capacity.

Pubmed ID: 16943244 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: HL-48509
  • Agency: NHLBI NIH HHS, United States
    Id: HL-70828

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-Kv2.1 K+ Channel Antibody (antibody)

RRID:AB_10672253

This monoclonal targets Kv2.1 potassium channel

View all literature mentions

Kv1.5 potassium channel (antibody)

RRID:AB_10675288

This monoclonal targets Kv1.5 potassium channel

View all literature mentions

Anti-Kv1.4 K+ Channel Antibody (antibody)

RRID:AB_2249726

This monoclonal targets Kv1.4 K+ channel

View all literature mentions