Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Endogenous cell repair of chronic demyelination.

Journal of neuropathology and experimental neurology | 2006

In multiple sclerosis lesions, remyelination typically fails with repeated or chronic demyelinating episodes and results in neurologic disability. Acute demyelination models in rodents typically exhibit robust spontaneous remyelination that prevents appropriate evaluation of strategies for improving conditions of insufficient remyelination. In the current study, we used a mouse model of chronic demyelination induced by continuous ingestion of 0.2% cuprizone for 12 weeks. This chronic process depleted the oligodendrocyte progenitor population and impaired oligodendrocyte regeneration. Remyelination remained limited after removal of cuprizone from the diet. Fibroblast growth factor 2 (FGF2) expression was persistently increased in the corpus callosum of chronically demyelinated mice as compared with nonlesioned mice. We used FGF2 mice to determine whether removal of endogenous FGF2 promoted remyelination of chronically demyelinated areas. Wild-type and FGF2 mice exhibited similar demyelination during chronic cuprizone treatment. Importantly, in contrast to wild-type mice, the FGF2 mice spontaneously remyelinated completely during the recovery period after chronic demyelination. Increased remyelination in FGF2 mice correlated with enhanced oligodendroglial regeneration. FGF2 genotype did not alter the density of oligodendrocyte progenitor cells or proliferating cells after chronic demyelination. These findings indicate that attenuating FGF2 created a sufficiently permissive lesion environment for endogenous cells to effectively remyelinate viable axons even after chronic demyelination.

Pubmed ID: 16651886 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS039293
  • Agency: NINDS NIH HHS, United States
    Id: NS39293

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions