Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae.

Cells have evolved molecular mechanisms for the efficient transmission of organelles during cell division. Little is known about how peroxisomes are inherited. Inp1p is a peripheral membrane protein of peroxisomes of Saccharomyces cerevisiae that affects both the morphology of peroxisomes and their partitioning during cell division. In vivo 4-dimensional video microscopy showed an inability of mother cells to retain a subset of peroxisomes in dividing cells lacking the INP1 gene, whereas cells overexpressing INP1 exhibited immobilized peroxisomes that failed to be partitioned to the bud. Overproduced Inp1p localized to both peroxisomes and the cell cortex, supporting an interaction of Inp1p with specific structures lining the cell periphery. The levels of Inp1p vary with the cell cycle. Inp1p binds Pex25p, Pex30p, and Vps1p, which have been implicated in controlling peroxisome division. Our findings are consistent with Inp1p acting as a factor that retains peroxisomes in cells and controls peroxisome division. Inp1p is the first peroxisomal protein directly implicated in peroxisome inheritance.

Pubmed ID: 15928207 RIS Download

Mesh terms: Cell Cycle | Cell Division | Extrachromosomal Inheritance | GTP-Binding Proteins | Gene Expression Regulation, Fungal | Intracellular Membranes | Membrane Proteins | Peroxisomes | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins | Vesicular Transport Proteins

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NIH Image

A public domain image processing and analysis program for the Macintosh. Image can acquire, display, edit, enhance, analyze and animate images. It reads and writes TIFF, PICT, PICS and MacPaint files, providing compatibility with many other applications, including programs for scanning, processing, editing, publishing and analyzing images. It supports many standard image processing functions, including contrast enhancement, density profiling, smoothing, sharpening, edge detection, median filtering, and spatial convolution with user defined kernels. Image can be used to measure area, mean, centroid, perimeter, etc. of user defined regions of interest. It also performs automated particle analysis and provides tools for measuring path lengths and angles. Spatial calibration is supported to provide real world area and length measurements. Density calibration can be done against radiation or optical density standards using user specified units. Results can be printed, exported to text files, or copied to the Clipboard. A tool palette supports editing of color and gray scale images, including the ability to draw lines, rectangles and text. It can flip, rotate, invert and scale selections. It supports multiple windows and 8 levels of magnification. All editing, filtering, and measurement functions operate at any level of magnification and are undoable. Image directly supports Data Translation and Scion frame grabber cards for capturing images or movie sequences using a TV camera. Acquired images can be shading corrected and frame averaged. Other frame grabbers are supported via plug-in modules. Image can be customized in three ways: via a built-in Pascal-like macro language, via externally compiled plug-in modules and on the Pascal source code level. Example macros, plug-ins and complete source code can be downloaded from the Download page.

tool

View all literature mentions