2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis.

Cell | 2005

Tuberous sclerosis (TSC) is a tumor syndrome caused by mutation in TSC1 or TSC2 genes. TSC tumorigenesis is not always accompanied by loss of heterozygosity (LOH). Recently, extracellular signal-regulated kinase (Erk) has been found activated in TSC lesions lacking TSC1 or TSC2 LOH. Here, we show that Erk may play a critical role in TSC progression through posttranslational inactivation of TSC2. Erk-dependent phosphorylation leads to TSC1-TSC2 dissociation and markedly impairs TSC2 ability to inhibit mTOR signaling, cell proliferation, and oncogenic transformation. Importantly, expression of an Erk nonphosphorylatable TSC2 mutant in TSC2+/- tumor cells where Erk is constitutively activated blocks tumorigenecity in vivo, while wild-type TSC2 is ineffective. Our findings position the Ras/MAPK pathway upstream of the TSC complex and suggest that Erk may modulate mTOR signaling and contribute to disease progression through phosphorylation and inactivation of TSC2.

Pubmed ID: 15851026 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: P30 CA08748
  • Agency: NCI NIH HHS, United States
    Id: U01 CA-84292

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Scansite (tool)

RRID:SCR_007026

Scansite searches for motifs within proteins that are likely to be phosphorylated by specific protein kinases or bind to domains such as SH2 domains, 14-3-3 domains or PDZ domains. The Motifscanner program utilizes an entropy approach that assesses the probability of a site matching the motif using the selectivity values and sums the logs of the probability values for each amino acid in the candidate sequence. The program then indicates the percentile ranking of the candidate motif in respect to all potential motifs in proteins of a protein database. When available, percentile scores of some confirmed phosphorylation sites for the kinase of interests or confirmed binding sites of the domain of interest are provided for comparison with the scores of the candidate motifs.

View all literature mentions