Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 156 papers

Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function.

  • Rachael Baker‎ et al.
  • Nature structural & molecular biology‎
  • 2013‎

Cell growth and differentiation are controlled by growth factor receptors coupled to the GTPase Ras. Oncogenic mutations disrupt GTPase activity, leading to persistent Ras signaling and cancer progression. Recent evidence indicates that monoubiquitination of Ras leads to Ras activation. Mutation of the primary site of monoubiquitination impairs the ability of activated K-Ras (one of the three mammalian isoforms of Ras) to promote tumor growth. To determine the mechanism of human Ras activation, we chemically ubiquitinated the protein and analyzed its function by NMR, computational modeling and biochemical activity measurements. We established that monoubiquitination has little effect on the binding of Ras to guanine nucleotide, GTP hydrolysis or exchange-factor activation but severely abrogates the response to GTPase-activating proteins in a site-specific manner. These findings reveal a new mechanism by which Ras can trigger persistent signaling in the absence of receptor activation or an oncogenic mutation.


Tumor Suppression of Ras GTPase-Activating Protein RASA5 through Antagonizing Ras Signaling Perturbation in Carcinomas.

  • Lili Li‎ et al.
  • iScience‎
  • 2019‎

Aberrant RAS signaling activation is common in cancers with even few Ras mutations, indicating alternative dysregulation other than genetic mutations. We identified a Ras GTPase-activating gene RASA5/SYNGAP1, at the common 6p21.3 deletion, methylated/downregulated in multiple carcinomas and different from other RASA family members (RASA1-RASA4), indicating its special functions in tumorigenesis. RASA5 mutations are rare, unlike other RASA members, whereas its promoter CpG methylation is frequent in multiple cancer cell lines and primary carcinomas and associated with patient's poor survival. RASA5 expression inhibited tumor cell migration/invasion and growth in mouse model, functioning as a tumor suppressor. RASA5 suppressed RAS signaling, depending on its Ras GTPase-activating protein catalytic activity, which could be counteracted by oncogenic HRas Q61L mutant. RASA5 knockdown enhanced Ras signaling to promote tumor cell growth. RASA5 also inhibited epithelial-mesenchymal transition (EMT) through regulating actin reorganization. Thus, epigenetic inactivation of RASA5 contributing to hyperactive RAS signaling is involved in Ras-driven human oncogenesis.


A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II.

  • H J Chen‎ et al.
  • Neuron‎
  • 1998‎

Ca2+ influx through N-methyl-D-aspartate- (NMDA-) type glutamate receptors plays a critical role in synaptic plasticity in the brain. One of the proteins activated by the increase in Ca2+ is CaM kinase II (CaMKII). Here, we report a novel synaptic Ras-GTPase activating protein (p135 SynGAP) that is a major component of the postsynaptic density, a complex of proteins associated with synaptic NMDA receptors. p135 SynGAP is almost exclusively localized at synapses in hippocampal neurons where it binds to and closely colocalizes with the scaffold protein PSD-95 and colocalizes with NMDA receptors. The Ras-GTPase activating activity of p135 SynGAP is inhibited by phosphorylation by CaMKII located in the PSD protein complex. Inhibition of p135 SynGAP by CaMKII will stop inactivation of GTP-bound Ras and thus could result in activation of the mitogen-activated protein (MAP) kinase pathway in hippocampal neurons upon activation of NMDA receptors.


Ras GTPase activating protein CoIra1 is involved in infection-related morphogenesis by regulating cAMP and MAPK signaling pathways through CoRas2 in Colletotrichum orbiculare.

  • Ken Harata‎ et al.
  • PloS one‎
  • 2014‎

Colletotrichum orbiculare is the causative agent of anthracnose disease on cucurbitaceous plants. Several signaling pathways, including cAMP-PKA and mitogen-activating protein kinase (MAPK) pathways are involved in the infection-related morphogenesis and pathogenicity of C. orbiculare. However, upstream regulators of these pathways for this species remain unidentified. In this study, CoIRA1, encoding RAS GTPase activating protein, was identified by screening the Agrobacterium tumefaciens-mediated transformation (AtMT) mutant, which was defective in the pathogenesis of C. orbiculare. The coira1 disrupted mutant showed an abnormal infection-related morphogenesis and attenuated pathogenesis. In Saccharomyces cerevisiae, Ira1/2 inactivates Ras1/2, which activates adenylate cyclase, leading to the synthesis of cAMP. Increase in the intracellular cAMP levels in coira1 mutants and dominant active forms of CoRAS2 introduced transformants indicated that CoIra1 regulates intracellular cAMP levels through CoRas2. Moreover, the phenotypic analysis of transformants that express dominant active form CoRAS2 in the comekk1 mutant or a dominant active form CoMEKK1 in the coras2 mutant indicated that CoRas2 regulates the MAPK CoMekk1-Cmk1 signaling pathway. The CoRas2 localization pattern in vegetative hyphae of the coira1 mutant was similar to that of the wild-type, expressing a dominant active form of RFP-CoRAS2. Moreover, we demonstrated that bimolecular fluorescence complementation (BiFC) signals between CoIra1 and CoRas2 were detected in the plasma membrane of vegetative hyphae. Therefore, it is likely that CoIra1 negatively regulates CoRas2 in vegetative hyphae. Furthermore, cytological analysis of the localization of CoIraI and CoRas2 revealed the dynamic cellular localization of the proteins that leads to proper assembly of F-actin at appressorial pore required for successful penetration peg formation through the pore. Thus, our results indicated that CoIra1 is involved in infection-related morphogenesis and pathogenicity by proper regulation of cAMP and MAPK signaling pathways through CoRas2.


Loss of Ras GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) inhibits the progression of ovarian cancer in coordination with ubiquitin-specific protease 10 (USP10).

  • Mengyuan Li‎ et al.
  • Bioengineered‎
  • 2022‎

Ovarian cancer (OC) is one of the most lethal gynecological malignancies. However, the molecular mechanisms underlying the development of OC remain unclear. Here, we report that loss of Ras GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) inhibits the progression of OC cells. Analysis of databases and clinical specimens showed that G3BP1 is upregulated in OC. The Kaplan-Meier plot results showed that G3BP1 is highly expressed in OC with a poor clinical outcome. Moreover, loss-of-G3BP1 suppresses the proliferation, migration, and invasion of OC cells. Protein-protein interaction network analysis and immunoprecipitation assay showed that ubiquitin-specific protease 10 (USP10) interacts with G3BP1. We next found that USP10 coordinately promotes tumor progression with G3BP1. Moreover, loss of USP10could restore the G3BP1-induced proliferation, migration, and invasion of OC cells. These data indicate that G3BP1 coordinated with USP10 to facilitate the progression of OC cells, and that G3BP1 may become a treatment target for OC.


Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases.

  • S Albert‎ et al.
  • The EMBO journal‎
  • 1999‎

Ypt/Rab proteins constitute the largest subfamily of the Ras superfamily of monomeric GTPases and are regulators of vesicular protein transport. Their slow intrinsic GTPase activity (10(-4)-10(-3) min(-1) at 30 degrees C) has to be accelerated to switch the active to the inactive conformation. We have identified the catalytic domain within the C-terminal halves of two yeast GTPase-activating proteins (GAPs), Gyp1p and Gyp7p, with specificity for Ypt/Rab GTPases. The catalytically active fragments of Gyp1p and Gyp7p were more active than the full-length proteins and accelerated the intrinsic GTP hydrolysis rates of their preferred substrates by factors of 4.5 x 10(4) and 7.8 x 10(5), respectively. The K(m) values for the Gyp1p and Gyp7p active fragments (143 and 42 microM, respectively) indicate that the affinities of those GAPs for their substrates are very low. The catalytic domains of Gyp1p and Gyp7p contain five invariant arginine residues; substitutions of only one of them (R343 in Gyp1p and R458 in the analogous position of Gyp7p) rendered the GAPs almost completely inactive. We suggest that Ypt/Rab-GAPs, like Ras- and Rho-GAPs, follow the same mode of action and provide a catalytic arginine ('arginine finger') in trans to accelerate the GTP hydrolysis rate of the transport GTPases.


Discovery of MINC1, a GTPase-activating protein small molecule inhibitor, targeting MgcRacGAP.

  • Arjan J van Adrichem‎ et al.
  • Combinatorial chemistry & high throughput screening‎
  • 2015‎

The Rho family of Ras superfamily small GTPases regulates a broad range of biological processes such as migration, differentiation, cell growth and cell survival. Therefore, the availability of small molecule modulators as tool compounds could greatly enhance research on these proteins and their biological function. To this end, we designed a biochemical, high throughput screening assay with complementary follow-up assays to identify small molecule compounds inhibiting MgcRacGAP, a Rho family GTPase activating protein involved in cytokinesis and transcriptionally upregulated in many cancers. We first performed an in-house screen of 20,480 compounds, and later we tested the assay against 342,046 compounds from the NIH Molecular Libraries Small Molecule Repository. Primary screening hit rates were about 1% with the majority of those affecting the primary readout, an enzyme-coupled GDP detection assay. After orthogonal and counter screens, we identified two hits with high selectivity towards MgcRacGAP, compared with other RhoGAPs, and potencies in the low micromolar range. The most promising hit, termed MINC1, was then examined with cell-based testing where it was observed to induce an increased rate of cytokinetic failure and multinucleation in addition to other cell division defects, suggesting that it may act as an MgcRacGAP inhibitor also in cells.


The N-Terminal GTPase Domain of p190RhoGAP Proteins Is a PseudoGTPase.

  • Amy L Stiegler‎ et al.
  • Structure (London, England : 1993)‎
  • 2018‎

The pseudoGTPases are a rapidly growing and important group of pseudoenzymes. p190RhoGAP proteins are critical regulators of Rho signaling and contain two previously identified pseudoGTPase domains. Here we report that p190RhoGAP proteins contain a third pseudoGTPase domain, termed N-GTPase. We find that GTP constitutively purifies with the N-GTPase domain, and a 2.8-Å crystal structure of p190RhoGAP-A co-purified with GTP reveals an unusual GTP-Mg2+ binding pocket. Six inserts in N-GTPase indicate perturbed catalytic activity and inability to bind to canonical GTPase activating proteins, guanine nucleotide exchange factors, and effector proteins. Biochemical analysis shows that N-GTPase does not detectably hydrolyze GTP, and exchanges nucleotide only under harsh Mg2+ chelation. Furthermore, mutational analysis shows that GTP and Mg2+ binding stabilizes the domain. Therefore, our results support that N-GTPase is a nucleotide binding, non-hydrolyzing, pseudoGTPase domain that may act as a protein-protein interaction domain. Thus, unique among known proteins, p190RhoGAPs contain three pseudoGTPase domains.


Allosteric regulation of a prokaryotic small Ras-like GTPase contributes to cell polarity oscillations in bacterial motility.

  • Jyoti Baranwal‎ et al.
  • PLoS biology‎
  • 2019‎

Mutual gliding motility A (MglA), a small Ras-like GTPase; Mutual gliding motility B (MglB), its GTPase activating protein (GAP); and Required for Motility Response Regulator (RomR), a protein that contains a response regulator receiver domain, are major components of a GTPase-dependent biochemical oscillator that drives cell polarity reversals in the bacterium Myxococcus xanthus. We report the crystal structure of a complex of M. xanthus MglA and MglB, which reveals that the C-terminal helix (Ct-helix) from one protomer of the dimeric MglB binds to a pocket distal to the active site of MglA. MglB increases the GTPase activity of MglA by reorientation of key catalytic residues of MglA (a GAP function) combined with allosteric regulation of nucleotide exchange by the Ct-helix (a guanine nucleotide exchange factor [GEF] function). The dual GAP-GEF activities of MglB accelerate the rate of GTP hydrolysis over multiple enzymatic cycles. Consistent with its GAP and GEF activities, MglB interacts with MglA bound to either GTP or GDP. The regulation is essential for cell polarity, because deletion of the Ct-helix causes bipolar localization of MglA, MglB, and RomR, thereby causing reversal defects in M. xanthus. A bioinformatics analysis reveals the presence of Ct-helix in homologues of MglB in other bacterial phyla, suggestive of the prevalence of the allosteric mechanism among other prokaryotic small Ras-like GTPases.


A novel role for the GTPase-activating protein Bud2 in the spindle position checkpoint.

  • Scott A Nelson‎ et al.
  • PloS one‎
  • 2012‎

The spindle position checkpoint (SPC) ensures correct mitotic spindle position before allowing mitotic exit in the budding yeast Saccharomyces cerevisiae. In a candidate screen for checkpoint genes, we identified bud2Δ as deficient for the SPC. Bud2 is a GTPase activating protein (GAP), and the only known substrate of Bud2 was Rsr1/Bud1, a Ras-like GTPase and a central component of the bud-site-selection pathway. Mutants lacking Rsr1/Bud1 had no checkpoint defect, as did strains lacking and overexpressing Bud5, a guanine-nucleotide exchange factor (GEF) for Rsr1/Bud1. Thus, the checkpoint function of Bud2 is distinct from its role in bud site selection. The catalytic activity of the Bud2 GAP domain was required for the checkpoint, based on the failure of the known catalytic point mutant Bud2(R682A) to function in the checkpoint. Based on assays of heterozygous diploids, bud2(R682A), was dominant for loss of checkpoint but recessive for bud-site-selection failure, further indicating a separation of function. Tem1 is a Ras-like protein and is the critical regulator of mitotic exit, sitting atop the mitotic exit network (MEN). Tem1 is a likely target for Bud2, supported by genetic analyses that exclude other Ras-like proteins.


Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases.

  • Ward G Walkup‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons.


The GTPase-activating protein-related domain of neurofibromin interacts with MC1R and regulates pigmentation-mediated signaling in human melanocytes.

  • Wissem Deraredj Nadim‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

The melanocortin 1 receptor (MC1R) is a G-protein coupled receptor (GPCR) which plays a major role in controlling melanogenesis. A large body of evidence indicates that GPCRs are part of large protein complexes that are critical for their signal transduction properties. Among proteins which may affect MC1R signaling, neurofibromin (Nf1), a GTPase activating protein (GAP) for Ras, is of special interest as it regulates adenylyl cyclase activity and ERK signaling, two pathways involved in MC1R signaling. Moreover, mutations in this gene encoding Nf1 are responsible for neurofibromatosis type I, a disease inducing hyperpigmented flat skin lesions. Using co-immunoprecipitation and Bioluminescence Resonance Energy Transfer experiments we demonstrated a physical interaction of Nf1 with MC1R. In particular, the GAP domain of Nf1 directly and constitutively interacts with MC1R in melanocytes. Pharmacologic and genetic approaches revealed that the GAP activity of Nf1 is important to regulate intracellular signaling pathways involved in melanogenesis and, consequently, melanogenic enzyme expression and melanin production. These finding shed new light on the understanding and cure of skin pigmentation disorders.


Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI.

  • Mikko O Laukkanen‎ et al.
  • PloS one‎
  • 2015‎

Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3-induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3-driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme.


A GTPase-activating protein-binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells.

  • Bindu Ramachandran‎ et al.
  • The Journal of biological chemistry‎
  • 2018‎

In aortic vascular smooth muscle (VSM), the canonical Wnt receptor LRP6 inhibits protein arginine (Arg) methylation, a new component of noncanonical Wnt signaling that stimulates nuclear factor of activated T cells (viz NFATc4). To better understand how methylation mediates these actions, MS was performed on VSM cell extracts from control and LRP6-deficient mice. LRP6-dependent Arg methylation was regulated on >500 proteins; only 21 exhibited increased monomethylation (MMA) with concomitant reductions in dimethylation. G3BP1, a known regulator of arteriosclerosis, exhibited a >30-fold increase in MMA in its C-terminal domain. Co-transfection studies confirm that G3BP1 (G3BP is Ras-GAP SH3 domain-binding protein) methylation is inhibited by LRP6 and that G3BP1 stimulates NFATc4 transcription. NFATc4 association with VSM osteopontin (OPN) and alkaline phosphatase (TNAP) chromatin was increased with LRP6 deficiency and reduced with G3BP1 deficiency. G3BP1 activation of NFATc4 mapped to G3BP1 domains supporting interactions with RIG-I (retinoic acid inducible gene I), a stimulus for mitochondrial antiviral signaling (MAVS) that drives cardiovascular calcification in humans when mutated in Singleton-Merten syndrome (SGMRT2). Gain-of-function SGMRT2/RIG-I mutants increased G3BP1 methylation and synergized with osteogenic transcription factors (Runx2 and NFATc4). A chemical antagonist of G3BP, C108 (C108 is 2-hydroxybenzoic acid, 2-[1-(2-hydroxyphenyl)ethylidene]hydrazide CAS 15533-09-2), down-regulated RIG-I-stimulated G3BP1 methylation, Wnt/NFAT signaling, VSM TNAP activity, and calcification. G3BP1 deficiency reduced RIG-I protein levels and VSM osteogenic programs. Like G3BP1 and RIG-I deficiency, MAVS deficiency reduced VSM osteogenic signals, including TNAP activity and Wnt5-dependent nuclear NFATc4 levels. Aortic calcium accumulation is decreased in MAVS-deficient LDLR-/- mice fed arteriosclerotic diets. The G3BP1/RIG-I/MAVS relay is a component of Wnt signaling. Targeting this relay may help mitigate arteriosclerosis.


R-Ras subfamily proteins elicit distinct physiologic effects and phosphoproteome alterations in neurofibromin-null MPNST cells.

  • Shannon M Weber‎ et al.
  • Cell communication and signaling : CCS‎
  • 2021‎

Loss of the Ras GTPase-activating protein neurofibromin promotes nervous system tumor pathogenesis in patients with neurofibromatosis type 1 (NF1). Neurofibromin loss potentially hyperactivates classic Ras (H-Ras, N-Ras, K-Ras), M-Ras, and R-Ras (R-Ras, R-Ras2/TC21) subfamily proteins. We have shown that classic Ras proteins promote proliferation and survival, but not migration, in malignant peripheral nerve sheath tumor (MPNST) cells. However, it is unclear whether R-Ras, R-Ras2 and M-Ras are expressed and hyperactivated in MPNSTs and, if so, whether they contribute to MPNST pathogenesis. We assessed the expression and activation of these proteins in MPNST cells and inhibited them to determine the effect this had on proliferation, migration, invasion, survival and the phosphoproteome.


RAS Mutations and Oncogenesis: Not all RAS Mutations are Created Equally.

  • Mark Steven Miller‎ et al.
  • Frontiers in genetics‎
  • 2011‎

Mutation in RAS proteins is one of the most common genetic alterations observed in human and experimentally induced rodent cancers. In vivo, oncogenic mutations have been shown to occur at exons 12, 13, and 61, resulting in any 1 of 19 possible point mutations in a given tumor for a specific RAS isoform. While some studies have suggested a possible role of different mutant alleles in determining tumor severity and phenotype, no general consensus has emerged on the oncogenicity of different mutant alleles in tumor formation and progression. Part of this may be due to a lack of a single, signature pathway that shows significant alterations between different mutations. Rather, it is likely that subtle differences in the activation, or lack thereof, of downstream effectors by different RAS mutant alleles may determine the eventual outcome in terms of tumor phenotype. This paper reviews our current understanding of the potential role of different RAS mutations on tumorigenesis, highlights studies in model cell culture and in vivo systems, and discusses the potential of expression array and computational network modeling to dissect out differences in activated RAS genes in conferring a transforming phenotype.


The differential palmitoylation states of N-Ras and H-Ras determine their distinct Golgi subcompartment localizations.

  • Stephen J Lynch‎ et al.
  • Journal of cellular physiology‎
  • 2015‎

Despite a high degree of structural homology and shared exchange factors, effectors and GTPase activating proteins, a large body of evidence suggests functional heterogeneity among Ras isoforms. One aspect of Ras biology that may explain this heterogeneity is the differential subcellular localizations driven by the C-terminal hypervariable regions of Ras proteins. Spatial heterogeneity has been documented at the level of organelles: palmitoylated Ras isoforms (H-Ras and N-Ras) localize on the Golgi apparatus whereas K-Ras4B does not. We tested the hypothesis that spatial heterogeneity also exists at the sub-organelle level by studying the localization of differentially palmitoylated Ras isoforms within the Golgi apparatus. Using confocal, live-cell fluorescent imaging and immunogold electron microscopy we found that, whereas the doubly palmitoylated H-Ras is distributed throughout the Golgi stacks, the singly palmitoylated N-Ras is polarized with a relative paucity of expression on the trans Golgi. Using palmitoylation mutants, we show that the different sub-Golgi distributions of the Ras proteins are a consequence of their differential degree of palmitoylation. Thus, the acylation state of Ras proteins controls not only their distribution between the Golgi apparatus and the plasma membrane, but also their distribution within the Golgi stacks.


Up-regulation of ras-GAP genes is reversed by a MEK inhibitor and doxorubicin in v-Ki-ras-transformed NIH/3T3 fibroblasts.

  • Minako Hashii‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

Ras-GTPase-activating proteins (Ras-GAPs) have been implicated both as suppressors of Ras and as effectors in regulating cellular activities. To study whether Ras-GAPs have roles in tumor cell survival or not, mRNA levels of ras-related genes were measured in v-Ki-ras-transformed (DT) and the parental NIH/3T3 cells, using real-time PCR. mRNA levels of p120-Gap, Gap1(m), and PIK3CA were increased in DT cells compared with NIH/3T3 cells. p120-Gap and PIK3CA genes were induced by addition of serum or epidermal growth factor to serum-starved DT cells. Three anti-cancer drugs, an ERK kinase (MEK) inhibitor PD98059, a topoisomerase II poison doxorubicin (adriamycin), and a histone deacetylase inhibitor trichostatin A, selectively blocked the overexpression of p120-Gap and Gap1(m) genes in DT cells. These drugs also caused reversion of DT cells to the adherent shape associated with growth arrest. Our results suggest that p120-Gap and Gap1(m) genes provide important biomarkers for cancer therapies.


Deconstruction of the Ras switching cycle through saturation mutagenesis.

  • Pradeep Bandaru‎ et al.
  • eLife‎
  • 2017‎

Ras proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins.


Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis.

  • Severa Bunda‎ et al.
  • Nature communications‎
  • 2015‎

Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously 'undruggable' oncogenic or hyperactive Ras.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: