Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Characterization of Novel Derivatives of MBQ-167, an inhibitor of the GTP-binding proteins Rac/Cdc42.

  • Julia I Medina‎ et al.
  • Cancer research communications‎
  • 2022‎

Rac and Cdc42, are homologous GTPases that regulate cell migration, invasion, and cell cycle progression; thus, representing key targets for metastasis therapy. We previously reported on the efficacy of MBQ-167, which blocks both Rac1 and Cdc42 in breast cancer cells and mouse models of metastasis. To identify compounds with increased activity, a panel of MBQ-167 derivatives was synthesized, maintaining its 9-ethyl-3-(1H-1,2,3-triazol-1-yl)-9H-carbazole core. Similar to MBQ-167, MBQ-168 and EHop-097, inhibit activation of Rac and Rac1B splice variant and breast cancer cell viability, and induce apoptosis. MBQ-167 and MBQ-168 inhibit Rac and Cdc42 by interfering with guanine nucleotide binding, and MBQ-168 is a more effective inhibitor of PAK (1,2,3) activation. EHop-097 acts via a different mechanism by inhibiting the interaction of the guanine nucleotide exchange factor (GEF) Vav with Rac. MBQ-168 and EHop-097 inhibit metastatic breast cancer cell migration, and MBQ-168 promotes loss of cancer cell polarity to result in disorganization of the actin cytoskeleton and detachment from the substratum. In lung cancer cells, MBQ-168 is more effective than MBQ-167 or EHop-097 at reducing ruffle formation in response to EGF. Comparable to MBQ-167, MBQ-168 significantly inhibits HER2+ tumor growth and metastasis to lung, liver, and spleen. Both MBQ-167 and MBQ-168 inhibit the cytochrome P450 (CYP) enzymes 3A4, 2C9, and 2C19. However, MBQ-168 is ~10X less potent than MBQ-167 at inhibiting CYP3A4, thus demonstrating its utility in relevant combination therapies. In conclusion, the MBQ-167 derivatives MBQ-168 and EHop-097 are additional promising anti metastatic cancer compounds with similar and distinct mechanisms.


Expression Analysis of the Small GTP-Binding Protein Rac in Pterygium.

  • Ahmet Saracaloğlu‎ et al.
  • Turkish journal of ophthalmology‎
  • 2023‎

To determine the roles of small GTP-binding proteins Rac1, Rac2, and Rac3 expression in pterygial tissue and to compare these expressions with normal conjunctival tissue.


MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42.

  • G R Fanger‎ et al.
  • The EMBO journal‎
  • 1997‎

MEK kinases (MEKKs) 1, 2, 3 and 4 are members of sequential kinase pathways that regulate MAP kinases including c-Jun NH2-terminal kinases (JNKs) and extracellular regulated kinases (ERKs). Confocal immunofluorescence microscopy of COS cells demonstrated differential MEKK subcellular localization: MEKK1 was nuclear and in post-Golgi vesicular-like structures; MEKK2 and 4 were localized to distinct Golgi-associated vesicles that were dispersed by brefeldin A. MEKK1 and 2 were activated by EGF, and kinase-inactive mutants of each MEKK partially inhibited EGF-stimulated JNK activity. Kinase-inactive MEKK1, but not MEKK2, 3 or 4, strongly inhibited EGF-stimulated ERK activity. In contrast to MEKK2 and 3, MEKK1 and 4 specifically associated with Rac and Cdc42 and kinase-inactive mutants blocked Rac/Cdc42 stimulation of JNK activity. Inhibitory mutants of MEKK1-4 did not affect p21-activated kinase (PAK) activation of JNK, indicating that the PAK-regulated JNK pathway is independent of MEKKs. Thus, in different cellular locations, specific MEKKs are required for the regulation of MAPK family members, and MEKK1 and 4 are involved in the regulation of JNK activation by Rac/Cdc42 independent of PAK. Differential MEKK subcellular distribution and interaction with small GTP-binding proteins provides a mechanism to regulate MAP kinase responses in localized regions of the cell and to different upstream stimuli.


Tramadol regulates the activation of human platelets via Rac but not Rho/Rho-kinase.

  • Hiroki Iida‎ et al.
  • PloS one‎
  • 2023‎

Tramadol is a useful analgesic which acts as a serotonin and noradrenaline reuptake inhibitor in addition to μ-opioid receptor agonist. Cytoplasmic serotonin modulates the small GTPase activity through serotonylation, which is closely related to the human platelet activation. We recently reported that the combination of subthreshold collagen and CXCL12 synergistically activates human platelets. We herein investigated the effect and the mechanism of tramadol on the synergistic effect. Tramadol attenuated the synergistically stimulated platelet aggregation (300 μM of tramadol, 64.3% decrease, p<0.05). Not morphine or reboxetine, but duloxetine, fluvoxamine and sertraline attenuated the synergistic effect of the combination on the platelet aggregation (30 μM of fluvoxamine, 67.3% decrease, p<0.05; 30 μM of sertraline, 67.8% decrease, p<0.05). The geranylgeranyltransferase inhibitor GGTI-286 attenuated the aggregation of synergistically stimulated platelet (50 μM of GGTI-286, 80.8% decrease, p<0.05), in which GTP-binding Rac was increased. The Rac1-GEF interaction inhibitor NSC23766 suppressed the platelet activation and the phosphorylation of p38 MAPK and HSP27 induced by the combination of collagen and CXCL12. Tramadol and fluvoxamine almost completely attenuated the levels of GTP-binding Rac and the phosphorylation of both p38 MAPK and HSP27 stimulated by the combination. Suppression of the platelet aggregation after the duloxetine administration was observed in 2 of 5 patients in pain clinic. These results suggest that tramadol negatively regulates the combination of subthreshold collagen and CXCL12-induced platelet activation via Rac upstream of p38 MAPK.


In vitro and in vivo analysis of neurotrophin-3 activation of Arf6 and Rac-1.

  • Pedro F Esteban‎ et al.
  • Methods in enzymology‎
  • 2008‎

Arf GTP-binding proteins and Rho-family GTPases play key roles in regulating membrane remodeling and cytoskeletal reorganization involved in cell movement. Several studies have implicated neurotrophins and their receptors as upstream activators of these small GTP-binding proteins, however, the mechanisms and the cell type specificity of this neurotrophin activity are still under investigation. Here we describe the rationale and protocols used for the dissection of an NT3 activated pathway that leads to the specific activation of Arf6 and Rac1.


Effects of decreased Rac activity and malignant state on oral squamous cell carcinoma in vitro.

  • Yudai Matsuoka‎ et al.
  • PloS one‎
  • 2021‎

Rac proteins, members of the Rho family of small GTP-binding proteins, have been implicated in transducing a number of signals for various biological mechanisms, including cell cytoskeleton organization, transcription, proliferation, migration, and cancer cell motility. Among human cancers, Rac proteins are highly activated by either overexpression of the genes, up-regulation of the protein, or by mutations that allow the protein to elude normal regulatory signaling pathways. Rac proteins are involved in controlling cell survival and apoptosis. The effects of Rac inhibition by the Rac-specific small molecule inhibitor NSC23766 or by transfection of dominant negative Rac (Rac-DN) were examined on three human-derived oral squamous cell carcinoma cell lines that exhibit different malignancy grades, OSC-20 (grade 3), OSC-19 (grade 4C), and HOC313 (grade 4D). Upon suppression of Rac, OSC-19 and HOC313 cells showed significant decreases in Rac activity and resulted in condensation of the nuclei and up-regulation of c-Jun N-terminal kinase (JNK), leading to caspase-dependent apoptosis. In contrast, OSC-20 cells showed only a slight decrease in Rac activity, which resulted in slight activation of JNK and no change in the nuclei. Fibroblasts treated with NSC23766 also showed only a slight decrease in Rac activity with no change in the nuclei or JNK activity. Our results indicated that apoptosis elicited by the inhibition of Rac depended on the extent of decreased Rac activity and the malignant state of the squamous cell carcinoma. In addition, activation of JNK strongly correlated with apoptosis. Rac inhibition may represent a novel therapeutic approach for cancer treatment.


Actin re-organization induced by Chlamydia trachomatis serovar D--evidence for a critical role of the effector protein CT166 targeting Rac.

  • Jessica Thalmann‎ et al.
  • PloS one‎
  • 2010‎

The intracellular bacterium Chlamydia trachomatis causes infections of urogenital tract, eyes or lungs. Alignment reveals homology of CT166, a putative effector protein of urogenital C. trachomatis serovars, with the N-terminal glucosyltransferase domain of clostridial glucosylating toxins (CGTs). CGTs contain an essential DXD-motif and mono-glucosylate GTP-binding proteins of the Rho/Ras families, the master regulators of the actin cytoskeleton. CT166 is preformed in elementary bodies of C. trachomatis D and is detected in the host-cell shortly after infection. Infection with high MOI of C. trachomatis serovar D containing the CT166 ORF induces actin re-organization resulting in cell rounding and a decreased cell diameter. A comparable phenotype was observed in HeLa cells treated with the Rho-GTPase-glucosylating Toxin B from Clostridium difficile (TcdB) or HeLa cells ectopically expressing CT166. CT166 with a mutated DXD-motif (CT166-mut) exhibited almost unchanged actin dynamics, suggesting that CT166-induced actin re-organization depends on the glucosyltransferase motif of CT166. The cytotoxic necrotizing factor 1 (CNF1) from E. coli deamidates and thereby activates Rho-GTPases and transiently protects them against TcdB-induced glucosylation. CNF1-treated cells were found to be protected from TcdB- and CT166-induced actin re-organization. CNF1 treatment as well as ectopic expression of non-glucosylable Rac1-G12V, but not RhoA-G14A, reverted CT166-induced actin re-organization, suggesting that CT166-induced actin re-organization depends on the glucosylation of Rac1. In accordance, over-expression of CT166-mut diminished TcdB induced cell rounding, suggesting shared substrates. Cell rounding induced by high MOI infection with C. trachomatis D was reduced in cells expressing CT166-mut or Rac1-G12V, and in CNF1 treated cells. These observations indicate that the cytopathic effect of C. trachomatis D is mediated by CT166 induced Rac1 glucosylation. Finally, chlamydial uptake was impaired in CT166 over-expressing cells. Our data strongly suggest CT166's participation as an effector protein during host-cell entry, ensuring a balanced uptake into host-cells by interfering with Rac-dependent cytoskeletal changes.


A Drosophila homolog of the Rac- and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures.

  • N Harden‎ et al.
  • Molecular and cellular biology‎
  • 1996‎

Changes in cell morphology are essential in the development of a multicellular organism. The regulation of the cytoskeleton by the Rho subfamily of small GTP-binding proteins is an important determinant of cell shape. The Rho subfamily has been shown to participate in a variety of morphogenetic processes during Drosophila melanogaster development. We describe here a Drosophila homolog, DPAK, of the serine/threonine kinase PAK, a protein which is a target of the Rho subfamily proteins Rac and Cdc42. Rac, Cdc42, and PAK have previously been implicated in signaling by c-Jun amino-terminal kinases. DPAK bound to activated (GTP-bound) Drosophila Rac (DRacA) and Drosophila Cdc42. Similarities in the distributions of DPAK, integrin, and phosphotyrosine suggested an association of DPAK with focal adhesions and Cdc42- and Rac-induced focal adhesion-like focal complexes. DPAK was elevated in the leading edge of epidermal cells, whose morphological changes drive dorsal closure of the embryo. We have previously shown that the accumulation of cytoskeletal elements initiating cell shape changes in these cells could be inhibited by expression of a dominant-negative DRacA transgene. We show that leading-edge epidermal cells flanking segment borders, which express particularly large amounts of DPAK, undergo transient losses of cytoskeletal structures during dorsal closure. We propose that DPAK may be regulating the cytoskeleton through its association with focal adhesions and focal complexes and may be participating with DRacA in a c-Jun amino-terminal kinase signaling pathway recently demonstrated to be required for dorsal closure.


Selective amino acid restriction differentially affects the motility and directionality of DU145 and PC3 prostate cancer cells.

  • Ya-Min Fu‎ et al.
  • Journal of cellular physiology‎
  • 2008‎

We previously found that selective restriction of amino acids inhibits invasion of two androgen-independent human prostate cancer cell lines, DU145 and PC3. Here we show that the restriction of tyrosine (Tyr) and phenylalanine (Phe), methionine (Met) or glutamine (Gln) modulates the activity of G proteins and affects the balance between two actin-binding proteins, cofilin and profilin, in these two cell lines. Selective amino acid restriction differentially reduces G protein binding to GTP in DU145 cells. Tyr/Phe deprivation reduces the amount of Rho-GTP and Rac1-GTP. Met deprivation reduces the amount of Ras-GTP and Rho-GTP, and Gln deprivation decreases Ras-GTP, Rac-GTP, and Cdc42-GTP. Restriction of these amino acids increases the amount of profilin, cofilin and phosphorylation of cofilin-Ser(3). Increased PAK1 expression and phosphorylation of PAK1-Thr(423), and Ser(199/204) are consistent with the increased phosphorylation of LIMK1-Thr(508). In PC3 cells, Tyr/Phe or Gln deprivation reduces the amount of Ras-GTP, and all of the examined amino acid restrictions reduce the amount of profilin. PAK1, LIMK1 and cofilin are not significantly altered. These data reveal that specific amino acid deprivation differentially affects actin dynamics in DU145 and PC3. Modulation on Rho, Rac, PAK1, and LIMK1 likely alter the balance between cofilin and profilin in DU145 cells. In contrast, profilin is inhibited in PC3 cells. These effects modulate directionality and motility to inhibit invasion.


Rac1-mediated signaling plays a central role in secretion-dependent platelet aggregation in human blood stimulated by atherosclerotic plaque.

  • Suman Dwivedi‎ et al.
  • Journal of translational medicine‎
  • 2010‎

Platelet activation requires rapid remodeling of the actin cytoskeleton which is regulated by small GTP-binding proteins. By using the Rac1-specific inhibitor NSC23766, we have recently found that Rac1 is a central component of a signaling pathway that regulates dephosphorylation and activation of the actin-dynamising protein cofilin, dense and α-granule secretion, and subsequent aggregation of thrombin-stimulated washed platelets.


Loss of Protein Kinase Novel 1 (PKN1) is associated with mild systolic and diastolic contractile dysfunction, increased phospholamban Thr17 phosphorylation, and exacerbated ischaemia-reperfusion injury.

  • Asvi A Francois‎ et al.
  • Cardiovascular research‎
  • 2018‎

PKN1 is a stress-responsive protein kinase acting downstream of small GTP-binding proteins of the Rho/Rac family. The aim was to determine its role in endogenous cardioprotection.


Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region.

  • Ambuj Kumar‎ et al.
  • PloS one‎
  • 2013‎

Ras-related C3 botulinum toxin substrate 1 (RAC1) is a plasma membrane-associated small GTPase which cycles between the active GTP-bound and inactive GDP-bound states. There is wide range of evidences indicating its active participation in inducing cancer-associated phenotypes. RAC1 F28L mutation (RAC(F28L)) is a fast recycling mutation which has been implicated in several cancer associated cases. In this work we have performed molecular docking and molecular dynamics simulation (~0.3 μs) to investigate the conformational changes occurring in the mutant protein. The RMSD, RMSF and NHbonds results strongly suggested that the loss of native conformation in the Switch I region in RAC1 mutant protein could be the reason behind its oncogenic transformation. The overall results suggested that the mutant protein attained compact conformation as compared to the native. The major impact of mutation was observed in the Switch I region which might be the crucial reason behind the loss of interaction between the guanine ring and F28 residue.


Multisite phosphorylation of P-Rex1 by protein kinase C.

  • Juan Carlos Montero‎ et al.
  • Oncotarget‎
  • 2016‎

P-Rex proteins are guanine nucleotide exchange factors (GEFs) that act on the Rho/Rac family of GTP binding proteins. The activity of P-Rex proteins is regulated by several extracellular stimuli. In fact, activation of growth factor receptors has been reported to activate a phosphorylation/dephosphorylation cycle of P-Rex1. Such cycle includes dephosphorylation of serines 313 and 319 which negatively regulate the GEF activity of P-Rex1, together with phosphorylation of serines 605 and 1169 which favour P-Rex1 GEF activity. However, the kinases that regulate phosphorylation at these different regulatory sites are largely unknown. Here we have investigated the potential regulatory action of several kinases on the phosphorylation of P-Rex1 at S313, S319, S605 and S1169. We show that activation of protein kinase C (PKC) caused phosphorylation of S313, S319 and S1169. Activation of growth factor receptors induced phosphorylation of S1169 through a mechanism that was independent of PKC, indicating that distinct kinases and mechanisms control the phosphorylation of P-Rex1 at different regulatory serines. Genetic and biochemical studies confirmed that the PKC isoform PKCδ was able to directly phosphorylate P-Rex1 at S313. Functional studies using cells with very low endogenous P-Rex1 expression, transfected with wild type P-Rex1 or a mutant form in which S313 was substituted by alanine, indicated that phosphorylation at that residue negatively regulated P-Rex1 exchange activity. We suggest that control of P-Rex1 activity depends on a highly dynamic interplay among distinct signalling routes and its multisite phosphorylation is controlled by the action of different kinases.


Distinct CED-10/Rac1 domains confer context-specific functions in development.

  • Steffen Nørgaard‎ et al.
  • PLoS genetics‎
  • 2018‎

Rac GTPases act as master switches to coordinate multiple interweaved signaling pathways. A major function for Rac GTPases is to control neurite development by influencing downstream effector molecules and pathways. In Caenorhabditis elegans, the Rac proteins CED-10, RAC-2 and MIG-2 act in parallel to control axon outgrowth and guidance. Here, we have identified a single glycine residue in the CED-10/Rac1 Switch 1 region that confers a non-redundant function in axon outgrowth but not guidance. Mutation of this glycine to glutamic acid (G30E) reduces GTP binding and inhibits axon outgrowth but does not affect other canonical CED-10 functions. This demonstrates previously unappreciated domain-specific functions within the CED-10 protein. Further, we reveal that when CED-10 function is diminished, the adaptor protein NAB-1 (Neurabin) and its interacting partner SYD-1 (Rho-GAP-like protein) can act as inhibitors of axon outgrowth. Together, we reveal that specific domains and residues within Rac GTPases can confer context-dependent functions during animal development.


Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway.

  • J L Brown‎ et al.
  • Current biology : CB‎
  • 1996‎

The Rho-related GTP-binding proteins Cdc42 and Rac1 have been shown to regulate signaling pathways involved in cytoskeletal reorganization and stress-responsive JNK (Jun N-terminal kinase) activation. However, to date, the GTPase targets that mediate these effects have not been identified. PAK defines a growing family of mammalian kinases that are related to yeast Ste20 and are activated in vitro through binding to Cdc42 and Rac1 (PAK: p21 Cdc42-/Rac-activated kinase). Clues to PAK function have come from studies of Ste20, which controls the activity of the yeast mating mitogen-activated protein (MAP) kinase cascade, in response to a heterotrimeric G protein and Cdc42.


Leptin activates Akt in oesophageal cancer cells via multiple atorvastatin-sensitive small GTPases.

  • Ian L P Beales‎ et al.
  • Molecular and cellular biochemistry‎
  • 2021‎

Obesity is a risk factor for Barrett's oesophagus and oesophageal adenocarcinoma. Adipose tissue secretes the hormone leptin. Leptin is a growth factor for several cell types, including Barrett's cells and oesophageal adenocarcinoma cells. Statins are associated with reduced rates of Barrett's oesophagus and oesophageal cancer and exhibit anti-cancer effects in vitro. The mechanisms of these effects are not fully established. We have examined the effects of leptin and the lipid-soluble statin, atorvastatin, on signalling via monomeric GTP-binding proteins and Akt. Proliferation and apoptosis were assessed in OE33 cells. Akt activity was quantified by cell-based ELISA and in vitro kinase assay. Specific small-molecule inhibitors and a dominant-negative construct were used to reduce Akt activity. Small GTPases were inhibited using transfection of dominant-negative plasmids, prenylation inhibitors and pretreatment with atorvastatin. Leptin stimulated Akt activity and cell proliferation and inhibited camptothecin-induced apoptosis in an Akt-sensitive manner. Leptin induced phosphorylation of Bad and FOXO1 in an Akt-sensitive manner. Leptin activated Ras, Rac, RhoA and cdc42. Transfection of dominant-negative plasmids confirmed that leptin-induced Akt activation required Ras, RhoA cdc42 but not Rac. Atorvastatin inhibited leptin-induced activation of Ras, RhoA, cdc42 and Akt. Co-treatment with mevalonate prevented these effects of atorvastatin. The protein kinase Akt is essential to the growth-promoting and anti-apoptotic effects of leptin in oesophageal adenocarcinoma cells. Akt is activated via Ras-, Rho- and cdc42-dependant pathways. Atorvastatin reduces leptin-induced Akt activation by inhibiting prenylation of small GTPases. This may explain the reduced incidence of oesophageal adenocarcinoma in statin-users.


Interactome and evolutionary conservation of Dictyostelid small GTPases and their direct regulators.

  • Gillian Forbes‎ et al.
  • Small GTPases‎
  • 2022‎

GTP binding proteins known as small GTPases make up one of the largest groups of regulatory proteins and control almost all functions of living cells. Their activity is under, respectively, positive and negative regulation by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which together with their upstream regulators and the downstream targets of the small GTPases form formidable signalling networks. While genomics has revealed the large size of the GTPase, GEF and GAP repertoires, only a small fraction of their interactions and functions have yet been experimentally explored. Dictyostelid social amoebas have been particularly useful in unravelling the roles of many proteins in the Rac-Rho and Ras-Rap families of GTPases in directional cell migration and regulation of the actin cytoskeleton. Genomes and cell-type specific and developmental transcriptomes are available for Dictyostelium species that span the 0.5 billion years of evolution of the group from their unicellular ancestors. In this work, we identified all GTPases, GEFs and GAPs from genomes representative of the four major taxon groups and investigated their phylogenetic relationships and evolutionary conservation and changes in their functional domain architecture and in their developmental and cell-type specific expression. We performed a hierarchical cluster analysis of the expression profiles of the ~2000 analysed genes to identify putative interacting sets of GTPases, GEFs and GAPs, which highlight sets known to interact experimentally and many novel combinations. This work represents a valuable resource for research into all fields of cellular regulation.


Regulation of exocytosis from rat peritoneal mast cells by G protein beta gamma-subunits.

  • J A Pinxteren‎ et al.
  • The EMBO journal‎
  • 1998‎

We applied G protein-derived beta gamma-subunits to permeabilized mast cells to test their ability to regulate exocytotic secretion. Mast cells permeabilized with streptolysin-O leak soluble (cytosol) proteins over a period of 5 min and become refractory to stimulation by Ca2+ and GTPgammaS over approximately 20-30 min. beta gamma-Subunits applied to the permeabilized cells retard this loss of sensitivity to stimulation (run-down) and it can be inferred that they interact with the regulatory mechanism for secretion. While alpha-subunits are without effect, beta gamma-subunits at concentrations >10(-8 )M enhance the secretion due to Ca2+ and GTPgammaS. Unlike the small GTPases Rac and Cdc42, beta gamma-subunits cannot induce secretion in the absence of an activating guanine nucleotide, and thus further GTP-binding proteins (likely to be Rho-related GTPases) must be involved. The enhancement due to beta gamma-subunits is mediated largely through interaction with pleckstrin homology (PH) domains. It remains manifest in the face of maximum activation by PMA and inhibition of PKC with the pseudosubstrate inhibitory peptide. Soluble peptides mimicking PH domains inhibit the secretion due to GTPgammaS and block the enhancement due to beta gamma-subunits. Our data suggest that beta gamma-subunits are components of the pathway of activation of secretion due to receptor-mimetic ligands such as mastoparan and compound 48/80.


Cell cycle regulation of Rho signaling pathways.

  • Muriel David‎ et al.
  • Cell cycle (Georgetown, Tex.)‎
  • 2012‎

The dynamics of the actin cytoskeleton and its regulation by Rho GTPases are essential to maintain cell shape, to allow cell motility and are also critical during cell cycle progression and mitosis. Rho GTPases and their effectors are involved in cell rounding at mitosis onset, in chromosomes alignment and are required for contraction of the actomyosin ring that separates daughter cells at the end of mitosis. Recent studies have revealed how a number of nucleotide exchange factors and GTPase-activating proteins regulate the activity of Rho GTPases during these processes. This review will focus on how the cell cycle machinery, in turn, regulates expression of proteins in the Rho signaling pathways through transcriptional activation, ubiquitylation and proteasomal degradation and modulates their activity through phosphorylation by mitotic kinases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: