Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

beta-Arrestins modulate Adenovirus-vector-induced innate immune responses: differential regulation by beta-arrestin-1 and beta-arrestin-2.

  • Sergey S Seregin‎ et al.
  • Virus research‎
  • 2010‎

Adenovirus (Ad)-based vectors have been utilized in human gene transfer clinical trials since 1993. Unfortunately, innate immune responses directed against the Ad capsid and/or its genetic cargo can significantly limit the usage of Ad vectors. Previous studies have demonstrated that several signaling pathways are triggered by Ads, inclusive of TLR-dependent pathways. The G-protein-coupled receptor adaptors beta-arrestin-1 (beta-Arr1) and beta-arrestin-2 (beta-Arr2) are known to have pivotal roles in regulating TLR4 triggered signaling and inflammatory responses. In this study, we examined the role of beta-arrestins in Ad5-vector-induced inflammatory responses. Our studies reveal that both beta-arrestins are capable of modulating Ad5-vector-induced inflammatory responses in vivo and in vitro. Importantly, our studies divulge another level of complexity to these responses, as our results demonstrate beta-Arr1 to be a positive regulator, and beta-Arr2 a negative regulator of Ad5 induced innate immune responses. These data may allow gene therapy biologists to more accurately study the mechanisms underlying Ad5-vector-induced immune responses, and may also direct future efforts to modulate these mechanisms to improve the safety and/or efficacy of this important gene transfer vector.


Tolerance to the antinociceptive effects of peripherally administered opioids. Expression of beta-arrestins.

  • Laura Hernández‎ et al.
  • Brain research‎
  • 2009‎

Tolerance to peripheral antinociception after chronic exposure to systemic morphine was assessed in mice with chronic CFA-inflammation; cross-tolerance to locally administered mu, delta and kappa-opioid agonists and levels of beta-arrestins in the injured paw, were also evaluated. Tolerance was induced by the subcutaneous implantation of a 75 mg morphine-pellet, and antinociception evaluated with the Randall-Selitto test, 5 min after the subplantar injection of morphine, fentanyl, buprenorphine, DPDPE, U-50488H or CRF. Experiments were performed in the absence and presence of CFA-inflammation, in animals implanted with a morphine or placebo pellet. Beta-arrestin protein levels were determined by western blot. In mice without inflammation, subplantar opioids did not induce antinociception, while during CFA-inflammation, all drugs generated dose-response curves with an order of potency of: U-50488H < DPDPE < morphine < buprenorphine < fentanyl << CRF. During CFA-inflammation plus morphine-pellet, the potency of fentanyl decreased 1.25 times, while that of DPDPE, U-50488H and CRF diminished approximately 2.5-4.3 times. For each drug, the ratio between the ED(50)'s in tolerant and naive animals, was significantly higher than 1 (except for buprenorphine and fentanyl), demonstrating partial cross-tolerance to systemic morphine. Inflammation induced a twofold increase in beta-arrestin expression (p<0.01), and the levels decreased after acute morphine exposure (p<0.05). Tolerance did not alter beta-arrestins, but partially prevented the increase induced by inflammation. The results suggest that peripheral beta-arrestins could facilitate peripheral OR-desensitization and tolerance development. Clinically, the experiments could be useful to establish the effectiveness of local opioid administration in patients with musculoskeletal pain, chronically receiving morphine analgesia.


Endothelin-converting enzyme-1 regulates endosomal sorting of calcitonin receptor-like receptor and beta-arrestins.

  • Benjamin E Padilla‎ et al.
  • The Journal of cell biology‎
  • 2007‎

Although cell surface metalloendopeptidases degrade neuropeptides in the extracellular fluid to terminate signaling, the function of peptidases in endosomes is unclear. We report that isoforms of endothelin-converting enzyme-1 (ECE-1a-d) are present in early endosomes, where they degrade neuropeptides and regulate post-endocytic sorting of receptors. Calcitonin gene-related peptide (CGRP) co-internalizes with calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), beta-arrestin2, and ECE-1 to early endosomes, where ECE-1 degrades CGRP. CGRP degradation promotes CLR/RAMP1 recycling and beta-arrestin2 redistribution to the cytosol. ECE-1 inhibition or knockdown traps CLR/RAMP1 and beta-arrestin2 in endosomes and inhibits CLR/RAMP1 recycling and resensitization, whereas ECE-1 overexpression has the opposite effect. ECE-1 does not regulate either the resensitization of receptors for peptides that are not ECE-1 substrates (e.g., angiotensin II), or the recycling of the bradykinin B(2) receptor, which transiently interacts with beta-arrestins. We propose a mechanism by which endosomal ECE-1 degrades neuropeptides in endosomes to disrupt the peptide/receptor/beta-arrestin complex, freeing internalized receptors from beta-arrestins and promoting recycling and resensitization.


Nedd4 E3 ligase and beta-arrestins regulate ubiquitination, trafficking, and stability of the mGlu7 receptor.

  • Sanghyeon Lee‎ et al.
  • eLife‎
  • 2019‎

The metabotropic glutamate receptor 7 (mGlu7) is a class C G protein-coupled receptor that modulates excitatory neurotransmitter release at the presynaptic active zone. Although post-translational modification of cellular proteins with ubiquitin is a key molecular mechanism governing protein degradation and function, mGlu7 ubiquitination and its functional consequences have not been elucidated yet. Here, we report that Nedd4 ubiquitin E3 ligase and β-arrestins regulate ubiquitination of mGlu7 in heterologous cells and rat neurons. Upon agonist stimulation, β-arrestins recruit Nedd4 to mGlu7 and facilitate Nedd4-mediated ubiquitination of mGlu7. Nedd4 and β-arrestins regulate constitutive and agonist-induced endocytosis of mGlu7 and are required for mGlu7-dependent MAPK signaling in neurons. In addition, Nedd4-mediated ubiquitination results in the degradation of mGlu7 by both the ubiquitin-proteasome system and the lysosomal degradation pathway. These findings provide a model in which Nedd4 and β-arrestin act together as a complex to regulate mGlu7 surface expression and function at presynaptic terminals.


Endosomal colocalization of melanocortin-3 receptor and beta-arrestins in CAD cells with altered modification of AKT/PKB.

  • D C Nyan‎ et al.
  • Neuropeptides‎
  • 2008‎

The melanocortin 3-receptor is involved in regulating energy metabolism, body fluid composition and inflammatory responses. Melanocortin receptors function by activating membrane bound adenylate cyclase. However, the literature reports indicate that some G protein coupled receptors (GPCRs) can also activate mitogen activated protein kinase (MAPK) or phosphoinositide 3 kinase (PI3K) signaling pathways consequent to their endocytosis. These studies were undertaken to evaluate the role of these pathways in MC3R signaling in brain-stem neuronal cells. Recruitment of arrestins is implicated in the activation of secondary pathways by GPCRs and our data shows the colocalization of either arrestin B1 or B2 with MC3R in endosomes. An alteration in PKB phosphorylation pattern was observed in MC3R expressing cells independent of agonist stimulation. MC3R transfectants exhibited increased proliferation rates and inhibition of PKB pathway with triciribine abrogated cell proliferation in both vector control and MC3R transfectants. PKB is constitutively active in proliferating CAD cells but could be further activated by culturing the cells in differentiation medium. These studies suggest that the AKT/PKB pathway plays an important role in the proliferation of CAD cells and suggest a link between MC3R and cell growth pathways that may involve the alteration of AKT/PKB signaling pathway.


Mammalian α arrestins link activated seven transmembrane receptors to Nedd4 family e3 ubiquitin ligases and interact with β arrestins.

  • Fortune F Shea‎ et al.
  • PloS one‎
  • 2012‎

The complement of fungal cell surface proteins is widely regulated by ubiquitination of membrane proteins, which results in their endocytosis and vacuolar degradation. For diverse fungal transporters, the specificity of ubiquitination is conferred by alpha arrestin adaptors, which recruit the Nedd4 family E3 ubiquitin ligase Rsp5. A recent study showed that one mammalian alpha arrestin also mediates ubiquitination and lysosomal trafficking of an activated plasma membrane receptor. Here we first screen all five widely-expressed human alpha arrestins for subcellular localization in ligand-stimulated and -unstimulated cells overexpressing the seven transmembrane receptor vasopressin 2. We then characterize the effects of alpha arrestins ARRDC3 and ARRDC4 upon activation of the seven transmembrane receptors vasopressin 2 and beta adrenergic 2. Using biochemical and imaging approaches, we show that ligand-activated receptors interact with alpha arrestins, and this results in recruitment of Nedd4 family E3 ubiquitin ligases and receptor ubiquitination - which are known to result in lysosomal trafficking. Our time course studies show these effects occur in the first 1-5 minutes after ligand activation, the same time that beta arrestins are known to have roles in receptor endocytic trafficking and kinase signaling. We tested the possibility that alpha and beta arrestins function coordinately and found co-immunoprecipitation and colocalization evidence to support this. Others recently reported that Arrdc3 knockout mice are lean and resistant to obesity. In the course of breeding our own Arrdc3-deficient mice, we observed two novel phenotypes in homozygotes: skin abnormalities, and embryonic lethality on normal chow diet, but not on high fat diet. Our findings suggest that alpha and beta arrestins function coordinately to maintain the optimal complement and function of cell surface proteins according to cellular physiological context and external signals. We discuss the implications of the alpha arrestin functions in fungi having evolved into coordinated alpha/beta arrestin functions in animals.


Regulation of Notch signalling by non-visual beta-arrestin.

  • Ashim Mukherjee‎ et al.
  • Nature cell biology‎
  • 2005‎

Signalling activity of the Notch receptor, which plays a fundamental role in metazoan cell fate determination, is controlled at multiple levels. We uncovered a Notch signal-controlling mechanism that depends on the ability of the non-visual beta-arrestin, Kurtz (Krz), to influence the degradation and, consequently, the function of the Notch receptor. We identified Krz as a binding partner of a known Notch-pathway modulator, Deltex (Dx), and demonstrated the existence of a trimeric Notch-Dx-Krz protein complex. This complex mediates the degradation of the Notch receptor through a ubiquitination-dependent pathway. Our results establish a novel mode of regulation of Notch signalling and define a new function for non-visual beta-arrestins.


Agonist mediated internalization of M2 mAChR is beta-arrestin-dependent.

  • Kymry T Jones‎ et al.
  • Journal of molecular signaling‎
  • 2006‎

Muscarinic acetylcholine receptors (mAChRs) undergo agonist-promoted internalization, but evidence suggesting that the mechanism of internalization is beta-arrestin dependent has been contradictory and unclear. Previous studies using heterologous over-expression of wild type or dominant-negative forms of beta-arrestins have reported that agonist-promoted internalization of M2 mAChRs is a beta-arrestin- and clathrin-independent phenomenon. In order to circumvent the complications associated with the presence of endogenous beta-arrestin that may have existed in these earlier studies, we examined agonist-promoted internalization of the M2 mAChR in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin knockout mice that lack expression of either one or both isoforms of beta-arrestin (beta-arrestin 1 and 2).


{beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation.

  • Seungkirl Ahn‎ et al.
  • The Journal of biological chemistry‎
  • 2009‎

beta-Arrestins, originally discovered as terminators of G protein-coupled receptor signaling, have more recently been appreciated to also function as signal transducers in their own right, although the consequences for cellular physiology have not been well understood. Here we demonstrate that beta-arrestin-2 mediates anti-apoptotic cytoprotective signaling stimulated by a typical 7-transmembrane receptor the angiotensin ATII 1A receptor, expressed endogenously in rat vascular smooth muscle cells or by transfection in HEK-293 cells. Receptor stimulation leads to concerted activation of two pathways, ERK/p90RSK and PI3K/AKT, which converge to phosphorylate and inactivate the pro-apoptotic protein BAD. Anti-apoptotic effects as well as pathway activities can be stimulated by an angiotensin analog (SII), which has been previously shown to activate beta-arrestin but not G protein-dependent signaling, and are abrogated by beta-arrestin-2 small interfering RNA. These findings establish a key role for beta-arrestin-2 in mediating cellular cytoprotective functions by a 7-transmembrane receptor and define the biochemical pathways involved.


Allosteric activation of proto-oncogene kinase Src by GPCR-beta-arrestin complexes.

  • Natalia Pakharukova‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

G protein-coupled receptors (GPCRs) initiate signaling cascades via G-proteins and beta-arrestins (βarr). βarr-dependent actions begin with recruitment of βarr to the phosphorylated receptor tail and are followed by engagement with the receptor core. βarrs are known to act as adaptor proteins binding receptors and various effectors, but it is unclear whether in addition to the scaffolding role βarrs can allosterically activate their downstream targets. Here we demonstrate the direct allosteric activation of proto-oncogene kinase Src by GPCR-βarr complexes in vitro and establish the conformational basis of the activation. Whereas free βarr1 had no effect on Src activity, βarr1 in complex with M2 muscarinic or β2-adrenergic receptors reconstituted in lipid nanodiscs activate Src by reducing the lag phase in Src autophosphorylation. Interestingly, receptor-βarr1 complexes formed with a βarr1 mutant, in which the finger-loop, required to interact with the receptor core, has been deleted, fully retain the ability to activate Src. Similarly, βarr1 in complex with only a phosphorylated C-terminal tail of the vasopressin 2 receptor activates Src as efficiently as GPCR-βarr complexes. In contrast, βarr1 and chimeric M2 receptor with nonphosphorylated C-terminal tail failed to activate Src. Taken together, these data demonstrate that the phosphorylated GPCR tail interaction with βarr1 is necessary and sufficient to empower it to allosterically activate Src. Our findings may have implications for understanding more broadly the mechanisms of allosteric activation of downstream targets by βarrs.


Quantitative analysis of neuropeptide Y receptor association with beta-arrestin2 measured by bimolecular fluorescence complementation.

  • L E Kilpatrick‎ et al.
  • British journal of pharmacology‎
  • 2010‎

beta-Arrestins are critical scaffold proteins that shape spatiotemporal signalling from seven transmembrane domain receptors (7TMRs). Here, we study the association between neuropeptide Y (NPY) receptors and beta-arrestin2, using bimolecular fluorescence complementation (BiFC) to directly report underlying protein-protein interactions.


Targeting of beta-arrestin2 to the centrosome and primary cilium: role in cell proliferation control.

  • Anahi Molla-Herman‎ et al.
  • PloS one‎
  • 2008‎

The primary cilium is a sensory organelle generated from the centrosome in quiescent cells and found at the surface of most cell types, from where it controls important physiological processes. Specific sets of membrane proteins involved in sensing the extracellular milieu are concentrated within cilia, including G protein coupled receptors (GPCRs). Most GPCRs are regulated by beta-arrestins, betaarr1 and betaarr2, which control both their signalling and endocytosis, suggesting that betaarrs may also function at primary cilium.


c-Src regulates Akt signaling in response to ghrelin via beta-arrestin signaling-independent and -dependent mechanisms.

  • Maria Lodeiro‎ et al.
  • PloS one‎
  • 2009‎

The aim of the present study was to identify the signaling mechanisms to ghrelin-stimulated activation of the serine/threonine kinase Akt. In human embryonic kidney 293 (HEK293) cells transfected with GHS-R1a, ghrelin leads to the activation of Akt through the interplay of distinct signaling mechanisms: an early G(i/o) protein-dependent pathway and a late pathway mediated by beta-arrestins. The starting point is the G(i/o)-protein dependent PI3K activation that leads to the membrane recruitment of Akt, which is phosphorylated at Y by c-Src with the subsequent phosphorylation at A-loop (T308) and HM (S473) by PDK1 and mTORC2, respectively. Once the receptor is activated, a second signaling pathway is mediated by beta-arrestins 1 and 2, involving the recruitment of at least beta-arrestins, c-Src and Akt. This beta-arrestin-scaffolded complex leads to full activation of Akt through PDK1 and mTORC2, which are not associated to the complex. In agreement with these results, assays performed in 3T3-L1 preadipocyte cells indicate that beta-arrestins and c-Src are implicated in the activation of Akt in response to ghrelin through the GHS-R1a. In summary this work reveals that c-Src is crucially involved in the ghrelin-mediated Akt activation. Furthermore, the results support the view that beta-arrestins act as both scaffolding proteins and signal transducers on Akt activation.


Beta-arrestin 2 is required for complement C1q expression in macrophages and constrains factor-independent survival.

  • Jane E Lattin‎ et al.
  • Molecular immunology‎
  • 2009‎

The beta-arrestins (ARRB1 and ARRB2) regulate G-protein coupled receptor (GPCR) dependent- and independent-signaling pathways and are ubiquitously expressed. Here we show that ARRB2 mRNA and protein expression is enriched in macrophages, and that it regulates complement C1q expression and cell survival. Basal and Toll-like receptor (TLR) inducible expression of mRNAs encoding the complement subcomponents C1qa, C1qb and C1qc was greatly reduced in bone marrow-derived macrophages (BMM) from ARRB2-deficient, but not ARRB1-deficient mice, while factor-independent survival of ARRB2(-/-) BMM was enhanced compared to wildtype BMM. TatARRB2(23), a cell-permeable peptide that contains the MAPK JNK-binding motif from within the ARRB2 C-domain, impaired ARRB2 interaction with JNK3, down-regulated C1q expression and permitted factor-independent survival in BMM, thus suggesting that this peptide antagonises ARRB2 function in macrophages. In addition, TatARRB2(23) transiently activated the phosphorylation of JNK and ERK, but not p38 in BMM. These data imply that ARRB2 acts to limit JNK/ERK activation and survival in macrophages, but is required for basal and TLR-inducible complement C1q expression. Given that loss of C1q function is strongly associated with the development of systemic lupus erythematosus, ARRB2 may act to limit the development of autoimmune disease.


Dissociation of beta-arrestin from internalized bradykinin B2 receptor is necessary for receptor recycling and resensitization.

  • May Simaan‎ et al.
  • Cellular signalling‎
  • 2005‎

Beta-arrestins are multifunctional adaptors that bind agonist-activated G protein-coupled receptors (GPCRs), mediate their desensitization and internalization, and control the rate at which receptors recycle back at the plasma membrane ready for subsequent stimulation. The activation of the bradykinin (BK) type 2 receptor (B2R) results in the rapid desensitization and internalization of the receptor. Little is known, however, about the role of beta-arrestin in regulating the intracellular trafficking and the resensitization of the B2R. Using confocal microscopy, we show that BK stimulation of COS-7 cells expressing B2R induces the colocalization of the agonist-activated receptor with beta-arrestin into endosomes. Fluorescent imaging and ligand binding experiments also reveal that upon agonist removal, beta-arrestin rapidly dissociates from B2R into endosomes, and that receptors return back to the plasma membrane, fully competent for reactivating B2R signaling as measured by NO production upon a second BK challenge. However, when the receptor is mutated in its C-terminal domain to increase its avidity for beta-arrestin, B2R remains associated with beta-arrestin into endosomes, and receptors fail to recycle to the plasma membrane postagonist wash. Similarly, the recycling of receptors is prevented when a beta-arrestin mutant exhibiting increased avidity for agonist-bound GPCRs is expressed with B2R. Stabilizing receptor/beta-arrestin complexes into endosomes results in the dampening of the BK-mediated NO production. These results provide evidence for the involvement of beta-arrestin in the intracellular trafficking of B2R, and highlight the importance of receptor recycling in reestablishing B2R signaling.


Impaired recruitment of Grk6 and beta-Arrestin 2 causes delayed internalization and desensitization of a WHIM syndrome-associated CXCR4 mutant receptor.

  • Peter J McCormick‎ et al.
  • PloS one‎
  • 2009‎

WHIM (warts, hypogammaglobulinemia, infections, and myelokatexis) syndrome is a rare immunodeficiency syndrome linked to heterozygous mutations of the chemokine receptor CXCR4 resulting in truncations of its cytoplasmic tail. Leukocytes from patients with WHIM syndrome display impaired CXCR4 internalization and enhanced chemotaxis in response to its unique ligand SDF-1/CXCL12, which likely contribute to the clinical manifestations. Here, we investigated the biochemical mechanisms underlying CXCR4 deficiency in WHIM syndrome. We report that after ligand activation, WHIM-associated mutant CXCR4 receptors lacking the carboxy-terminal 19 residues internalize and activate Erk 1/2 slower than wild-type (WT) receptors, while utilizing the same trafficking endocytic pathway. Recruitment of beta-Arrestin 2, but not beta-Arrestin 1, to the active WHIM-mutant receptor is delayed compared to the WT CXCR4 receptor. In addition, while both kinases Grk3 and Grk6 bind to WT CXCR4 and are critical to its trafficking to the lysosomes, Grk6 fails to associate with the WHIM-mutant receptor whereas Grk3 associates normally. Since beta-Arrestins and Grks play critical roles in phosphorylation and internalization of agonist-activated G protein-coupled receptors, these results provide a molecular basis for CXCR4 dysfunction in WHIM syndrome.


G Protein-Dependent Activation of the PKA-Erk1/2 Pathway by the Striatal Dopamine D1/D3 Receptor Heteromer Involves Beta-Arrestin and the Tyrosine Phosphatase Shp-2.

  • Federica Bono‎ et al.
  • Biomolecules‎
  • 2023‎

The heteromer composed of dopamine D1 and D3 receptors (D1R-D3R) has been defined as a structure able to trigger Erk1/2 and Akt signaling in a G protein-independent, beta-arrestin 1-dependent way that is physiologically expressed in the ventral striatum and is likely involved in the control of locomotor activity. Indeed, abnormal levels of D1R-D3R heteromer in the dorsal striatum have been correlated with the development of L-DOPA-induced dyskinesia (LID) in Parkinson's disease patients, a motor complication associated with striatal D1R signaling, thus requiring Gs protein and PKA activity to activate Erk1/2. Therefore, to clarify the role of the D1R/D3R heteromer in LID, we investigated the signaling pathway induced by the heteromer using transfected cells and primary mouse striatal neurons. Collectively, we found that in both the cell models, D1R/D3R heteromer-induced activation of Erk1/2 exclusively required the D1R molecular effectors, such as Gs protein and PKA, with the contribution of the phosphatase Shp-2 and beta-arrestins, indicating that heterodimerization with the D3R abolishes the specific D3R-mediated signaling but strongly allows D1R signals. Therefore, while in physiological conditions the D1R/D3R heteromer could represent a mechanism that strengthens the D1R activity, its pathological expression may contribute to the abnormal PKA-Shp-2-Erk1/2 pathway connected with LID.


Activation and nuclear translocation of ERK1/2 by the formyl peptide receptor is regulated by G protein and is not dependent on beta-arrestin translocation or receptor endocytosis.

  • Jeannie M Gripentrog‎ et al.
  • Cellular signalling‎
  • 2005‎

G protein-coupled receptors (GPCRs) transmit diverse cellular signals in response to a large number of stimuli such as chemoattractants, lipids, neurotransmitters, odorants and light. The classical signaling pathway is through heterotrimeric G proteins, but GPCRs can also transmit signals through mechanisms that are not dependent on G proteins. In mammalian cells, the key component for this type of signaling is the family of scaffolding molecules called beta-arrestins. They can function as scaffolds for activation of mitogen-activated protein kinases, including extracellular signal-regulated kinases 1 and 2 (ERK1/2). In this study we examined the role of G protein and beta-arrestin in formyl peptide receptor (FPR)-mediated activation of chemotaxis, receptor endocytosis and ERK1/2 activation using wild type and mutant receptors. Our findings suggest that, unlike certain other GPCRs that can activate ERK1/2 without the involvement of G protein, FPR requires signaling through a G protein-mediated pathway. Previous observations have shown that ERK1/2, activated through G protein, translocates to the nucleus where it stimulates transcription factors. In contrast, the scaffolding protein beta-arrestin retains the activated ERK1/2 in the cytoplasm to allow phosphorylation of cytoplasmic targets. Our experimental data show that both wild-type FPR and a mutant FPR, defective in beta-arrestin binding, induce nuclear translocation of activated ERK1/2 with similar ligand concentration dependence as seen for activation of cytosolic ERK1/2. We propose that FPR-mediated activation of ERK1/2 takes place primarily through G protein and is physiologically important to ensure transcriptional activation of myeloid immunomodulators, such as cytokines.


The arrestin fold: variations on a theme.

  • Laurence Aubry‎ et al.
  • Current genomics‎
  • 2009‎

Endocytosis of ligand-activated plasma membrane receptors has been shown to contribute to the regulation of their downstream signaling. beta-arrestins interact with the phosphorylated tail of activated receptors and act as scaffolds for the recruitment of adaptor proteins and clathrin, that constitute the machinery used for receptor endocytosis. Visual- and beta-arrestins have a two-lobe, immunoglobulin-like, beta-strand sandwich structure. The recent resolution of the crystal structure of VPS26, one of the retromer subunits, unexpectedly evidences an arrestin fold in this protein, which is otherwise unrelated to arrestins. From a functional point of view, VPS26 is involved in the retrograde transport of the mannose 6-P receptor from the endosomes to the trans-Golgi network. In addition to the group of genuine arrestins and Vps26, mammalian cells harbor a vast repertoire of proteins that are related to arrestins on the basis of their PFAM Nter and Cter arrestin- domains, which are named Arrestin Domain- Containing proteins (ADCs). The biological role of ADC proteins is still poorly understood. The three subfamilies have been merged into an arrestin-related protein clan.This paper provides an overall analysis of arrestin clan proteins. The structures and functions of members of the subfamilies are reviewed in mammals and model organisms such as Drosophila, Caenorhabditis, Saccharomyces and Dictyostelium.


A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis.

  • Eshan Ghosh‎ et al.
  • Nature nanotechnology‎
  • 2017‎

Beta-arrestins (βarrs) critically mediate desensitization, endocytosis and signalling of G protein-coupled receptors (GPCRs), and they scaffold a large number of interaction partners. However, allosteric modulation of their scaffolding abilities and direct targeting of their interaction interfaces to modulate GPCR functions selectively have not been fully explored yet. Here we identified a series of synthetic antibody fragments (Fabs) against different conformations of βarrs from phage display libraries. Several of these Fabs allosterically and selectively modulated the interaction of βarrs with clathrin and ERK MAP kinase. Interestingly, one of these Fabs selectively disrupted βarr-clathrin interaction, and when expressed as an intrabody, it robustly inhibited agonist-induced endocytosis of a broad set of GPCRs without affecting ERK MAP kinase activation. Our data therefore demonstrate the feasibility of selectively targeting βarr interactions using intrabodies and provide a novel framework for fine-tuning GPCR functions with potential therapeutic implications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: