Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Importin-beta: structural and dynamic determinants of a molecular spring.

  • Ulrich Zachariae‎ et al.
  • Structure (London, England : 1993)‎
  • 2008‎

The beta-karyopherin/RanGTP system constitutes the largest known family of cellular cargo transporters. The flexibility of the karyopherin transport receptors is the key to their versatility in binding cargoes of different shape and size. Despite strong binding of the Ran complex, the comparably low energy associated with GTP hydrolysis suffices to drive dissociation and fuel the transport cycle. Here, we elucidate the drastic structural dynamics of the prototypic karyopherin, importin-beta, and show that its flexibility also solves this energetic puzzle. Our nonequilibrium atomistic simulations reveal fast conformational changes, validated by small-angle X-ray scattering data, and unusually large structural fluctuations. The characteristic dynamic patterns of importin-beta and the observed unfolding pathway of the IBB domain suggest a cooperative mechanism of importin-beta function in the nucleus. We propose a molecular model in which the stored energy and structural dynamics account for an exchange pathway that explains the high observed rates of nucleocytoplasmic transport. Karyopherins utilize a mechanism of entropy/enthalpy control that might be a general feature of highly flexible proteins involved in protein-protein interactions.


Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr.

  • Iris Ben-Efraim‎ et al.
  • BMC cell biology‎
  • 2009‎

Tpr is a large protein with an extended coiled-coil domain that is localized within the nuclear basket of the nuclear pore complex. Previous studies 1 involving antibody microinjection into mammalian cells suggested a role for Tpr in nuclear export of proteins via the CRM1 export receptor. In addition, Tpr was found to co-immunoprecipitate with importins alpha and beta from Xenopus laevis egg extracts 2, although the function of this is unresolved. Yeast Mlp1p and Mlp2p, which are homologous to vertebrate Tpr, have been implicated in mRNA surveillance to retain unspliced mRNAs in the nucleus34. To augment an understanding of the role of Tpr in nucleocytoplasmic trafficking, we explored the interactions of recombinant Tpr with the karyopherins CRM1, importin beta and importin alpha by solid phase binding assays. We also investigated the conditions required for nuclear import of Tpr using an in vitro assay.


The adapter importin-alpha provides flexible control of nuclear import at the expense of efficiency.

  • Greg Riddick‎ et al.
  • Molecular systems biology‎
  • 2007‎

Although there exists a large family of nuclear transport receptors (Karyopherins), the majority of known import cargoes use an adapter protein, Importin-alpha (Impalpha), which links the cargo to a karyopherin, Importin-beta (Impbeta). The reason for the existence of transport adapters is unknown. One hypothesis is that, as Impalpha re-export is coupled to GTP hydrolysis, it can drive a higher concentration of nuclear cargo than could be achieved by direct cargo binding to Importin-beta. However, computer simulations predicted the opposite outcome, and showed that direct transport is faster than adapter-mediated transport. These predictions were validated experimentally. The data, together with previous analyses of nuclear protein import, suggest that the use of adapters such as importin-alpha provides the cell with increased dynamic range for control of nuclear import rates, but at the expense of efficiency.


Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex.

  • M Kann‎ et al.
  • The Journal of cell biology‎
  • 1999‎

Although many viruses replicate in the nucleus, little is known about the processes involved in the nuclear import of viral genomes. We show here that in vitro generated core particles of human hepatitis B virus bind to nuclear pore complexes (NPCs) in digitonin-permeabilized mammalian cells. This only occurred if the cores contained phosphorylated core proteins. Binding was inhibited by wheat germ agglutinin, by antinuclear pore complex antibodies, and by peptides corresponding either to classical nuclear localization signals (NLS) or to COOH-terminal sequences of the core protein. Binding was dependent on the nuclear transport factors importins (karyopherins) alpha and beta. The results suggested that phosphorylation induces exposure of NLS in the COOH-terminal portion of the core protein that allows core binding to the NPCs by the importin- (karyopherin-) mediated pathway. Thus, phosphorylation of the core protein emerged as an important step in the viral replication cycle necessary for transport of the viral genome to the nucleus.


Importin-11, a nuclear import receptor for the ubiquitin-conjugating enzyme, UbcM2.

  • S M Plafker‎ et al.
  • The EMBO journal‎
  • 2000‎

Importins are members of a family of transport receptors (karyopherins) that mediate the nucleocytoplasmic transport of protein and RNA cargoes. We identified importin-11 as a potential new human member of this family, on the basis of limited similarity to the Saccharomyces cerevisiae protein, Lph2p, and cloned the complete open reading frame. Importin-11 interacts with the Ran GTPase, and constitutively shuttles between the nuclear and cytoplasmic compartments. A yeast dihybrid screen identified UbcM2, an E2-type ubiquitin-conjugating enzyme, as a binding partner and potential transport cargo for importin-11. Importin-11 and UbcM2 interact directly, and the complex is disassembled by Ran:GTP but not by Ran:GDP. UbcM2 is constitutively nuclear and shuttles between the nuclear and cytoplasmic compartments. Nuclear import of UbcM2 requires Ran and importin-11, and is inhibited by wheatgerm agglutinin, energy depletion or dominant interfering mutants of Ran and importin-beta. These data establish importin-11 as a new member of the karyopherin family of transport receptors, and identify UbcM2 as a nuclear member of the E2 ubiquitin-conjugating enzyme family.


Loss of the importin Kpna2 causes infertility in male mice by disrupting the translocation of testis-specific transcription factors.

  • Paula Navarrete-López‎ et al.
  • iScience‎
  • 2023‎

Karyopherins mediate the movement between the nucleus and cytoplasm of specific proteins in diverse cellular processes. Through a loss-of-function approach, we here examine the role of Karyopherin Subunit Alpha 2 (Kpna2) in spermatogenesis. Knockout male mice exhibited reduced body size and sperm motility, increased sperm abnormalities, and led to the dysregulation of testis gene expression and ultimately to infertility. Impaired mRNA expression mainly affected clusters of genes expressed in spermatids and spermatocytes. Downregulated genes included a set of genes that participate in cell adhesion and extracellular matrix (ECM) organization. We detected both the enrichment of some transcription factors that bind to regions around transcription start sites of downregulated genes and the impaired transport of specific factors to the nucleus of spermatid cells. We propose that Kpna2 is essential in the seminiferous tubules for promoting the translocation of testis-specific transcription factors that control the expression of genes related to ECM organization.


Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles.

  • Ruth Ann Veach‎ et al.
  • PloS one‎
  • 2017‎

The rising tide of sepsis, a leading cause of death in the US and globally, is not adequately controlled by current antimicrobial therapies and supportive measures, thereby requiring new adjunctive treatments. Severe microvascular injury and multiple organ failure in sepsis are attributed to a "genomic storm" resulting from changes in microbial and host genomes encoding virulence factors and endogenous inflammatory mediators, respectively. This storm is mediated by stress-responsive transcription factors that are ferried to the nucleus by nuclear transport shuttles importins/karyopherins. We studied the impact of simultaneously targeting two of these shuttles, importin alpha 5 (Imp α5) and importin beta 1 (Imp β1), with a cell-penetrating Nuclear Transport Modifier (NTM) in a mouse model of polymicrobial sepsis. NTM reduced nuclear import of stress-responsive transcription factors nuclear factor kappa B, signal transducer and activator of transcription 1 alpha, and activator protein 1 in liver, which was also protected from sepsis-associated metabolic changes. Strikingly, NTM without antimicrobial therapy improved bacterial clearance in blood, spleen, and lungs, wherein a 700-fold reduction in bacterial burden was achieved while production of proinflammatory cytokines and chemokines in blood plasma was suppressed. Furthermore, NTM significantly improved thrombocytopenia, a prominent sign of microvascular injury in sepsis, inhibited neutrophil infiltration in the liver, decreased L-selectin, and normalized plasma levels of E-selectin and P-selectin, indicating reduced microvascular injury. Importantly, NTM combined with antimicrobial therapy extended the median time to death from 42 to 83 hours and increased survival from 30% to 55% (p = 0.022) as compared to antimicrobial therapy alone. This study documents the fundamental role of nuclear signaling mediated by Imp α5 and Imp β1 in the mechanism of polymicrobial sepsis and highlights the potential for targeting nuclear transport as an adjunctive therapy in sepsis management.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: