Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 892 papers

Structure of the dimerization and beta-catenin-binding region of alpha-catenin.

  • S Pokutta‎ et al.
  • Molecular cell‎
  • 2000‎

In adherens junctions, alpha-catenin links the cadherin-beta-catenin complex to the actin-based cytoskeleton. alpha-catenin is a homodimer in solution, but forms a 1:1 heterodimer with beta-catenin. The crystal structure of the alpha-catenin dimerization domain, residues 82-279, shows that alpha-catenin dimerizes through formation of a four-helix bundle in which two antiparallel helices are contributed by each protomer. A slightly larger fragment, comprising residues 57-264, binds to beta-catenin. A chimera consisting of the alpha-catenin-binding region of beta-catenin linked to the amino terminus of alpha-catenin 57-264 behaves as a monomer in solution, as expected, since beta-catenin binding disrupts the alpha-catenin dimer. The crystal structure of this chimera reveals the interaction between alpha- and beta-catenin, and provides a basis for understanding adherens junction assembly.


Antagonism of cell adhesion by an alpha-catenin mutant, and of the Wnt-signaling pathway by alpha-catenin in Xenopus embryos.

  • R N Sehgal‎ et al.
  • The Journal of cell biology‎
  • 1997‎

In Xenopus laevis development, beta-catenin plays an important role in the Wnt-signaling pathway by establishing the Nieuwkoop center, which in turn leads to specification of the dorsoventral axis. Cadherins are essential for embryonic morphogenesis since they mediate calcium-dependent cell-cell adhesion and can modulate beta-catenin signaling. alpha-catenin links beta-catenin to the actin-based cytoskeleton. To study the role of endogenous alpha-catenin in early development, we have made deletion mutants of alphaN-catenin. The binding domain of beta-catenin has been mapped to the NH2-terminal 210 amino acids of alphaN-catenin. Overexpression of mutants lacking the COOH-terminal 230 amino acids causes severe developmental defects that reflect impaired calcium-dependent blastomere adhesion. Lack of normal adhesive interactions results in a loss of the blastocoel in early embryos and ripping of the ectodermal layer during gastrulation. The phenotypes of the dominant-negative mutants can be rescued by coexpressing full-length alphaN-catenin or a mutant of beta-catenin that lacks the internal armadillo repeats. We next show that coexpression of alphaN-catenin antagonizes the dorsalizing effects of beta-catenin and Xwnt-8. This can be seen phenotypically, or by studying the effects of expression on the downstream homeobox gene Siamois. Thus, alpha-catenin is essential for proper morphogenesis of the embryo and may act as a regulator of the intracellular beta-catenin signaling pathway in vivo.


EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin.

  • Haitao Ji‎ et al.
  • Molecular cell‎
  • 2009‎

Increased transcriptional activity of beta-catenin resulting from Wnt/Wingless-dependent or -independent signaling has been detected in many types of human cancer, but the underlying mechanism of Wnt-independent regulation remains unclear. We demonstrate here that EGFR activation results in disruption of the complex of beta-catenin and alpha-catenin, thereby abrogating the inhibitory effect of alpha-catenin on beta-catenin transactivation via CK2alpha-dependent phosphorylation of alpha-catenin at S641. ERK2, which is activated by EGFR signaling, directly binds to CK2alpha via the ERK2 docking groove and phosphorylates CK2alpha primarily at T360/S362, subsequently enhancing CK2alpha activity toward alpha-catenin phosphorylation. In addition, levels of alpha-catenin S641 phosphorylation correlate with levels of ERK1/2 activity in human glioblastoma specimens and with grades of glioma malignancy. This EGFR-ERK-CK2-mediated phosphorylation of alpha-catenin promotes beta-catenin transactivation and tumor cell invasion. These findings highlight the importance of the crosstalk between EGFR and Wnt pathways in tumor development.


Vinculin is part of the cadherin-catenin junctional complex: complex formation between alpha-catenin and vinculin.

  • E E Weiss‎ et al.
  • The Journal of cell biology‎
  • 1998‎

In epithelial cells, alpha-, beta-, and gamma-catenin are involved in linking the peripheral microfilament belt to the transmembrane protein E-cadherin. alpha-Catenin exhibits sequence homologies over three regions to vinculin, another adherens junction protein. While vinculin is found in cell-matrix and cell-cell contacts, alpha-catenin is restricted to the latter. To elucidate, whether vinculin is part of the cell-cell junctional complex, we investigated complex formation and intracellular targeting of vinculin and alpha-catenin. We show that alpha-catenin colocalizes at cell-cell contacts with endogenous vinculin and also with the transfected vinculin head domain forming immunoprecipitable complexes. In vitro, the vinculin NH2-terminal head binds to alpha-catenin, as seen by immunoprecipitation, dot overlay, cosedimentation, and surface plasmon resonance measurements. The Kd of the complex was determined to 2-4 x 10(-7) M. As seen by overlays and affinity mass spectrometry, the COOH-terminal region of alpha-catenin is involved in this interaction. Complex formation of vinculin and alpha-catenin was challenged in transfected cells. In PtK2 cells, intact alpha-catenin and alpha-catenin1-670, harboring the beta-catenin- binding site, were directed to cell-cell contacts. In contrast, alpha-catenin697-906 fragments were recruited to cell-cell contacts, focal adhesions, and stress fibers. Our results imply that in vivo alpha-catenin, like vinculin, is tightly regulated in its ligand binding activity.


Loss of Coxsackie and adenovirus receptor downregulates alpha-catenin expression.

  • K Stecker‎ et al.
  • British journal of cancer‎
  • 2009‎

The Coxsackie and adenovirus receptor (CAR) has been shown to inhibit cancer cell proliferation, migration, and invasion. The underlying mechanisms, however, are poorly understood.


G-Alpha Subunit Abundance and Activity Differentially Regulate β-Catenin Signaling.

  • Arshiya Banu‎ et al.
  • Molecular and cellular biology‎
  • 2019‎

Heterotrimeric G proteins are signal transduction proteins involved in regulating numerous signaling events. In particular, previous studies have demonstrated a role for G-proteins in regulating β-catenin signaling. However, the link between G-proteins and β-catenin signaling is controversial and appears to depend on G-protein specificity. We describe a detailed analysis of a link between specific G-alpha subunits and β-catenin using G-alpha subunit genetic knockout and knockdown approaches. The Pasteurella multocida toxin was utilized as a unique tool to activate G-proteins, with LiCl treatment serving as a β-catenin signaling agonist. The results show that Pasteurella multocida toxin (PMT) significantly enhanced LiCl-induced active β-catenin levels in HEK293T cells and mouse embryo fibroblasts. Evaluation of the effect of specific G-alpha proteins on the regulation of β-catenin showed that Gq/11 and G12/13 knockout cells had significantly higher levels of active and total β-catenin than wild-type cells. The stimulation of active β-catenin by PMT and LiCl was lost upon both constitutive and transient knockdown of G12 and G13 but not Gq Based on our results, we conclude that endogenous G-alpha proteins are negative regulators of active β-catenin; however, PMT-activated G-alpha subunits positively regulate LiCl-induced β-catenin expression in a G12/13-dependent manner. Hence, G-alpha subunit regulation of β-catenin is context dependent.


Alpha-E-catenin binds to dynamitin and regulates dynactin-mediated intracellular traffic.

  • Wen-Hui Lien‎ et al.
  • The Journal of cell biology‎
  • 2008‎

Alpha-epithelial catenin (E-catenin) is an important cell-cell adhesion protein. In this study, we show that alpha-E-catenin also regulates intracellular traffic by binding to the dynactin complex component dynamitin. Dynactin-mediated organelle trafficking is increased in alpha-E-catenin(-/-) keratinocytes, an effect that is reversed by expression of exogenous alpha-E-catenin. Disruption of adherens junctions in low-calcium media does not affect dynactin-mediated traffic, indicating that alpha-E-catenin regulates traffic independently from its function in cell-cell adhesion. Although neither the integrity of dynactin-dynein complexes nor their association with vesicles is affected by alpha-E-catenin, alpha-E-catenin is necessary for the attenuation of microtubule-dependent trafficking by the actin cytoskeleton. Because the actin-binding domain of alpha-E-catenin is necessary for this regulation, we hypothesize that alpha-E-catenin functions as a dynamic link between the dynactin complex and actin and, thus, integrates the microtubule and actin cytoskeleton during intracellular trafficking.


alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells.

  • M Watabe-Uchida‎ et al.
  • The Journal of cell biology‎
  • 1998‎

alphaE-catenin, a cadherin-associated protein, is required for tight junction (TJ) organization, but its role is poorly understood. We transfected an alphaE-catenin-deficient colon carcinoma line with a series of alphaE-catenin mutant constructs. The results showed that the amino acid 326-509 domain of this catenin was required to organize TJs, and its COOH-terminal domain was not essential for this process. The 326-509 internal domain was found to bind vinculin. When an NH2-terminal alphaE-catenin fragment, which is by itself unable to organize the TJ, was fused with the vinculin tail, this chimeric molecule could induce TJ assembly in the alphaE-catenin-deficient cells. In vinculin-null F9 cells, their apical junctional organization was impaired, and this phenotype was rescued by reexpression of vinculin. These results indicate that the alphaE-catenin-vinculin interaction plays a role in the assembly of the apical junctional complex in epithelia.


Crystal structure of the M-fragment of alpha-catenin: implications for modulation of cell adhesion.

  • J Yang‎ et al.
  • The EMBO journal‎
  • 2001‎

The cytoskeletal protein alpha-catenin, which shares structural similarity with vinculin, is required for cadherin-mediated cell adhesion, and functions to modulate cell adhesive strength and to link the cadherins to the actin-based cytoskeleton. Here we describe the crystal structure of a region of alpha-catenin (residues 377-633) termed the M-fragment. The M-fragment is composed of a tandem repeat of two antiparallel four-helix bundles of virtually identical architectures that are related in structure to the dimerization domain of alpha-catenin and the tail region of vinculin. These results suggest that alpha-catenin is composed of repeating antiparallel helical domains. The region of alpha-catenin previously defined as an adhesion modulation domain corresponds to the C-terminal four-helix bundle of the M-fragment, and in the crystal lattice these domains exist as dimers. Evidence for dimerization of the M-fragment of alpha-catenin in solution was detected by chemical cross-linking experiments. The tendency of the adhesion modulation domain to form dimers may explain its biological activity of promoting cell-cell adhesiveness by inducing lateral dimerization of the associated cadherin molecule.


Identification of a Drosophila homologue of alpha-catenin and its association with the armadillo protein.

  • H Oda‎ et al.
  • The Journal of cell biology‎
  • 1993‎

The cadherin cell adhesion system plays a central role in cell-cell adhesion in vertebrates, but its homologues are not identified in the invertebrate. alpha-Catenins are a group of proteins associated with cadherins, and this association is crucial for the cadherins' function. Here, we report the cloning of a Drosophila alpha-catenin gene by low stringent hybridization with a mouse alpha E-catenin probe. Isolated cDNAs encoded a 110-kD protein with 60% identity to mouse alpha E-catenin, and this protein was termed D alpha-catenin. The gene of this protein was located at the chromosome band 80B. Immunostaining analysis using a mAb to D alpha-catenin revealed that it was localized to cell-cell contact sites, expressed throughout development and present in a wide variety of tissues. When this protein was immunoprecipitated from detergent extracts of Drosophila embryos or cell lines, several proteins co-precipitated. These included the armadillo product which was known to be a Drosophila homologue of beta-catenin, another cadherin-associated protein in vertebrates, and a 150-kD glycoprotein. These results strongly suggest that Drosophila has a cell adhesion machinery homologous to the vertebrate cadherin-catenin system.


Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression.

  • Manna Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Although cell-in-cell structures (CICs) could be detected in a wide range of human tumors, homotypic CICs formed between tumor cells occur at low rate for most of them. We recently reported that tumor cells lacking expression of E- and P-cadherin were incapable of forming homotypic CICs by entosis, and re-expression of E- or P-cadherin was sufficient to induce CICs formation in these tumor cells. In this work, we found that homotypic CICs formation was impaired in some tumor cells expressing high level of E-cadherin due to loss expression of alpha-catenin (α-catenin), a molecular linker between cadherin-mediated adherens junctions and F-actin. Expression of α-catenin in these tumor cells restored cell-cell adhesion and promoted CICs formation in a ROCK kinase-dependent way. Thus, our work identified α-catenin as another molecule in addition to E- and P-cadherin that were targeted to inactivate homotypic CICs formation in human tumor cells.


DNA topoisomerase II alpha promotes the metastatic characteristics of glioma cells by transcriptionally activating β-catenin.

  • Yi Liu‎ et al.
  • Bioengineered‎
  • 2022‎

DNA topoisomerase II alpha (TOP2A) reportedly plays a crucial role in several cancers, however, the precise regulatory role of TOP2A in metastatic characteristics of glioma is still poorly understood. Herein, we sought to elucidate the mechanisms by which TOP2A affects the metastatic phenotypes of glioma. We observed that a high level of TOP2A expression was dramatically linked with inferior survival in glioma patients while silencing of TOP2A impaired glioma cell proliferation and aggressiveness. TOP2A was found to directly interact with β-catenin and facilitated its translocation into the nucleus. Mechanistically, TOP2A effectively induced glioma cell growth and invasion in a β-catenin-dependent manner. Overall, we pinpoint TOP2A as a critical activator of the Wnt/β-catenin pathway in glioma, promoting cell growth, migration, and invasion.


Alpha-T-catenin is expressed in peripheral nerves as a constituent of Schwann cell adherens junctions.

  • Anthea Weng‎ et al.
  • Biology open‎
  • 2022‎

The adherens junction component, alpha-T-catenin (αTcat) is an established contributor to cardiomyocyte junction structure and function, but recent genomic studies link CTNNA3 polymorphisms to diseases with no clear cardiac underpinning, including asthma, autism and multiple sclerosis, suggesting causal contributions from a different cell-type. We show Ctnna3 mRNA is highly expressed in peripheral nerves (e.g. vagus and sciatic), where αTcat protein enriches at paranodes and myelin incisure adherens junctions of Schwann cells. We validate αTcat immunodetection specificity using a new Ctnna3-knock-out fluorescence reporter mouse line yet find no obvious Schwann cell loss-of-function morphology at the light microscopic level. CTNNA3/Ctnna3 mRNA is also abundantly detected in oligodendrocytes of the central nervous system via public databases, supporting a general role for αTcat in these unique cell-cell junctions. These data suggest that the wide range of diseases linked to CTNNA3 may be through its role in maintaining neuroglial functions of central and peripheral nervous systems. This article has a corresponding First Person interview with the co-first authors of the paper.


Catenin Alpha-2 Mutation Changes the Immune Microenvironment in Lung Adenocarcinoma Patients Receiving Immune Checkpoint Inhibitors.

  • Yang Wen‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Background: Lung cancer has always been the most prevalent cancer. Lung adenocarcinoma (LUAD) is the most common lung cancer subtype and has a high tumor mutation rate. In addition to KRAS, EGFR, ALK, HER2, ROS1, and BRAF, which are known to have high mutation rates, we discovered some new mutated genes, such as catenin alpha-2 (CTNNA2), in LUAD patients treated with immune checkpoint inhibitors (ICIs). These mutant genes are potential therapeutic targets for LUAD. Methods: We analyzed a cohort of LUAD patients with somatic mutation and survival data in the Cancer Genome Atlas (TCGA) database and a cohort of LUAD patients receiving immune checkpoint inhibitors with clinical data and whole-exome sequencing (WES) mutation data to evaluate the role of CTNNA2 gene mutation in LUAD. In addition, CIBERSORT was used to analyze the immune characteristics of CTNNA2 wild-type patients and CTNNA2 mutant-type patients, and gene set enrichment analysis (GSEA) was employed for pathway enrichment analysis. The results were verified by downloading data regarding the drug sensitivity of LUAD cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) database. Results: We found that CTNNA2 mutation was associated with longer overall survival (OS) in LUAD patients. Analysis of the cohort from the Cancer Genome Atlas showed that patients with CTNNA2 mutation had more tumor neoantigens and a greater tumor mutation burden (TMB). Through further analysis of the tumor immune microenvironment, we found that in LUAD patients with CTNNA2 mutations, the gene expression levels of chemokine C-X-C motif chemokine 9 (CXCL9) and granzyme B (GZMB) were elevated, and the gene expression level of inhibitory receptor killer cell immunoglobulin-like receptor 2DL1 (KIR2DL1) was significantly reduced. These alterations might affect gene expression in macrophages, NK cells, and mast cell markers. In addition, LUAD patients with CTNNA2 mutation had a significantly increased number of mutations in DNA damage response (DDR) genes. The drug susceptibility results and gene set enrichment analysis showed that after CTNNA2 mutation occurred, changes were found in the DNA damage response pathway, the phosphoinositide 3-kinase (PI3K) pathway and others, indicating that CTNNA2 mutation can regulate the activation of PI3K and DDR pathways. Conclusion: Our findings provide novel insights into the underlying pathogenesis of LUAD. CTNNA2 mutation can change the immune microenvironment, thereby improving patient prognosis. The results also suggest that CTNNA2 may become a new biomarker and therapeutic target for LUAD in the future.


Alpha-linolenic acid inhibits hepatocellular carcinoma cell growth through Farnesoid X receptor/β-catenin signaling pathway.

  • Shu Feng‎ et al.
  • Nutrition & metabolism‎
  • 2022‎

Altered lipid profiles are frequently present in cancer, and it is necessary to elucidate the role of changed lipid profiles in hepatocellular carcinoma (HCC). We conducted this study to investigate the changed lipid profile in HCC tissues and discover some remarkably changed lipid components, and to explore the function of changed lipid components in HCC development.


Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin.

  • A M Zorn‎ et al.
  • Molecular cell‎
  • 1999‎

Using a functional screen in Xenopus embryos, we identified a novel function for the HMG box protein XSox17 beta. Ectopic expression of XSox17 beta ventralizes embryos by inhibiting the Wnt pathway downstream of beta-catenin but upstream of the Wnt-responsive gene Siamois. XSox17 beta also represses transactivation of a TCF/LEF-dependent reporter construct by Wnt and beta-catenin. In animal cap experiments, it both activates transcription of endodermal genes and represses beta-catenin-stimulated expression of dorsal genes. The inhibition activity of XSox17 beta maps to a region C-terminal to the HMG box; this region of XSox17 beta physically interacts with the Armadillo repeats of beta-catenin. Two additional Sox proteins, XSox17 alpha and XSox3, likewise bind to beta-catenin and inhibit its TCF-mediated signaling activity. These results reveal an unexpected mechanism by which Sox proteins can modulate Wnt signaling pathways.


NHERF1 inhibits beta-catenin-mediated proliferation of cervical cancer cells through suppression of alpha-actinin-4 expression.

  • Qiqi Wang‎ et al.
  • Cell death & disease‎
  • 2018‎

Cervical cancer is one of the most lethal types of cancer in female. Aberrant activation of Wnt/β-catenin signaling pathway has been found to be involved in cervical cancer development and progression, whereas the underlying molecular mechanisms remain poorly understood. The present study showed that NHERF1 was a novel gene associated with both cell proliferation and Wnt signaling pathway in cervical cancer by analysis of differential gene expression and gene cluster for the cervical cancer specimens from GEO data sets. It was further demonstrated in cellular study that NHERF1 inhibition of cervical cancer cell proliferation through Wnt/β-catenin signaling was dependent on α-actinin-4 (ACTN4) expression. A negative association between NHERF1 expression and levels of ACTN4 and β-catenin was found in mouse xenograft model and cervical cancer specimens. Low levels of NHERF1 in cervical cancer specimens were found to associate with activation of cell proliferation and Wnt/β-catenin signaling by gene set enrichment analysis, and also were an independent predictive factor for worse prognosis of cervical cancer patients by Cox regression analysis. These findings demonstrate that NHERF1 inhibits Wnt signaling-mediated proliferation of cervical cancer via suppression of ACTN4, and NHERF1 downregulation may contribute to the progression of cervical cancer. These findings may also shed some lights for understanding the underlying mechanisms of cisplatin resistance and worse prognosis of HPV-inactive cervical cancer patients.


The presence of alpha-catenin in the VE-cadherin complex is required for efficient transendothelial migration of leukocytes.

  • Jaap D van Buul‎ et al.
  • International journal of biological sciences‎
  • 2009‎

The majority of the leukocytes cross the endothelial lining of the vessels through cell-cell junctions. The junctional protein Vascular Endothelial (VE)-cadherin is transiently re-distributed from sites of cell-cell contacts during passage of leukocytes. VE-cadherin is part of a protein complex comprising p120-catenin and beta-catenin as intracellular partners. Beta-catenin connects VE-cadherin to alpha-catenin. This VE-cadherin-catenin complex is believed to dynamically control endothelial cell-cell junctions and to regulate the passage of leukocytes, although not much is known about the role of alpha- and beta-catenin during the process of transendothelial migration (TEM). In order to study the importance of the interaction between alpha- and beta-catenin in TEM, we used a cell-permeable version of the peptide encoding the binding site of alpha-catenin for beta-catenin (S27D). The data show that S27D interferes with the interaction between alpha- and beta-catenin and induces a reversible decrease in electrical resistance of the endothelial monolayer. In addition, S27D co-localized with beta-catenin at cell-cell junctions. Surprisingly, transmigration of neutrophils across endothelial monolayers was blocked in the presence of S27D. In conclusion, our results show for the first time that the association of alpha-catenin with the cadherin-catenin complex is required for efficient leukocyte TEM.


Catenin Alpha 2 May Be a Biomarker or Potential Drug Target in Psychiatric Disorders with Perseverative Negative Thinking.

  • Nora Eszlari‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2021‎

AlphaN-catenin gene CTNNA2 has been implicated in intrauterine brain development, as well as in several psychiatric disorders and cardiovascular diseases. Our present aim was to investigate CTNNA2 gene-wide associations of single-nucleotide polymorphisms (SNPs) with psychiatric and cardiovascular risk factors to test the potential mediating role of rumination, a perseverative negative thinking phenotype in these associations. Linear mixed regression models were run by FaST-LMM within a sample of 795 individuals from the Budakalasz Health Examination Survey. The psychiatric outcome variables were rumination and its subtypes, and ten Brief Symptom Inventory (BSI) scores including, e.g., obsessive-compulsive, depression, anxiety, hostility, phobic anxiety, and paranoid ideation. Cardiovascular outcome variables were BMI and the Framingham risk scores for cardiovascular disease, coronary heart disease, myocardial infarction, and stroke. We found nominally significant CTNNA2 associations for every phenotype. Rumination totally mediated the associations of CTNNA2 rs17019243 with eight out of ten BSI scores, but none with Framingham scores or BMI. Our results suggest that CTNNA2 genetics may serve as biomarkers, and increasing the expression or function of CTNNA2 protein may be a potential new therapeutic approach in psychiatric disorders with perseverative negative thinking including, e.g., depression. Generally, an antiruminative agent could be a transdiagnostic and preventive psychopharmacon.


Activation of Wnt/beta-catenin signalling pathway induces chemoresistance to interferon-alpha/5-fluorouracil combination therapy for hepatocellular carcinoma.

  • T Noda‎ et al.
  • British journal of cancer‎
  • 2009‎

Type I IFN receptor type 2 (IFNAR2) expression correlates significantly with clinical response to interferon (IFN)-alpha/5-fluorouracil (5-FU) combination therapy for hepatocellular carcinoma (HCC). However, some IFNAR2-positive patients show no response to the therapy. This result suggests the possibility of other factors, which would be responsible for resistance to IFN-alpha/5-FU therapy. The aim of this study was to examine the mechanism of anti-proliferative effects of IFN-alpha/5-FU therapy and search for a biological marker of chemoresistance to such therapy. Gene expression profiling and molecular network analysis were used in the analysis of non-responders and responders with IFNAR2-positive HCC. The Wnt/beta-catenin signalling pathway contributed to resistance to IFN-alpha/5-FU therapy. Immunohistochemical analysis showed positive epithelial cell adhesion molecule (Ep-CAM) expression, the target molecule of Wnt/beta-catenin signalling, only in non-responders. In vitro studies showed that activation of Wnt/beta-catenin signalling by glycogen synthesis kinase-3 inhibitor (6-bromoindirubin-3'-oxime (BIO)) induced chemoresistance to IFN-alpha/5-FU. BrdU-based cell proliferation ELISA and cell cycle analysis showed that concurrent addition of BIO and IFN-alpha/5-FU significantly to hepatoma cell cultures reduced the inhibitory effects of the latter two on DNA synthesis and accumulation of cells in the S-phase. The results indicate that activation of Wnt/beta-catenin signalling pathway induces chemoresistance to IFN-alpha/5-FU therapy and suggest that Ep-CAM is a potentially useful marker for resistance to such therapy, especially in IFNAR2-positive cases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: