Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 605 papers

Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions.

  • Oliver Beutel‎ et al.
  • Cell‎
  • 2019‎

Tight junctions are cell-adhesion complexes that seal tissues and are involved in cell polarity and signaling. Supra-molecular assembly and positioning of tight junctions as continuous networks of adhesion strands are dependent on the membrane-associated scaffolding proteins ZO1 and ZO2. To understand how zona occludens (ZO) proteins organize junction assembly, we performed quantitative cell biology and in vitro reconstitution experiments. We discovered that ZO proteins self-organize membrane-attached compartments via phase separation. We identified the multivalent interactions of the conserved PDZ-SH3-GuK supra-domain as the driver of phase separation. These interactions are regulated by phosphorylation and intra-molecular binding. Formation of condensed ZO protein compartments is sufficient to specifically enrich and localize tight-junction proteins, including adhesion receptors, cytoskeletal adapters, and transcription factors. Our results suggest that an active-phase transition of ZO proteins into a condensed membrane-bound compartment drives claudin polymerization and coalescence of a continuous tight-junction belt.


Zonula occludens toxins and their prophages in Campylobacter species.

  • Fang Liu‎ et al.
  • Gut pathogens‎
  • 2016‎

We previously showed that zonula occludens toxin (Zot) encoded by Campylobacter concisus zot (808T) gene has the potential to initiate inflammatory bowel disease. This Zot protein caused prolonged intestinal epithelial barrier damage, induced intestinal epithelial and macrophage production of tumor necrosis factor-α and enhanced the responses of macrophages to other microbes. In order to understand the potential virulence of Zot proteins in other Campylobacter species, in this study we examined their presence, similarities, motifs and prophages.


Zonula occludens-2 regulates Rho proteins activity and the development of epithelial cytoarchitecture and barrier function.

  • Arturo Raya-Sandino‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2017‎

Silencing Zonula occludens 2 (ZO-2), a tight junctions (TJ) scaffold protein, in epithelial cells (MDCK ZO-2 KD) triggers: 1) Decreased cell to substratum attachment, accompanied by reduced expression of claudin-7 and integrin β1, and increased vinculin recruitment to focal adhesions and stress fibers formation; 2) Lowered cell-cell aggregation and appearance of wider intercellular spaces; 3) Increased RhoA/ROCK activity, mediated by GEF-HI recruitment to cell borders by cingulin; 4) Increased Cdc42 activity, mitotic spindle disorientation and the appearance of cysts with multiple lumens; 5) Increased Rac and cofilin activity, multiple lamellipodia formation and random cell migration but increased wound closure; 6) Diminished cingulin phosphorylation and disappearance of planar network of microtubules at the TJ region; and 7) Increased transepithelial electrical resistance at steady state, coupled to an increased expression of ZO-1 and claudin-4 and a decreased expression of claudin-2 and paracingulin. Hence, ZO-2 is a crucial regulator of Rho proteins activity and the development of epithelial cytoarchitecture and barrier function.


Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia.

  • Alan S Fanning‎ et al.
  • Molecular biology of the cell‎
  • 2012‎

The structure and function of both adherens (AJ) and tight (TJ) junctions are dependent on the cortical actin cytoskeleton. The zonula occludens (ZO)-1 and -2 proteins have context-dependent interactions with both junction types and bind directly to F-actin and other cytoskeletal proteins, suggesting ZO-1 and -2 might regulate cytoskeletal activity at cell junctions. To address this hypothesis, we generated stable Madin-Darby canine kidney cell lines depleted of both ZO-1 and -2. Both paracellular permeability and the localization of TJ proteins are disrupted in ZO-1/-2-depleted cells. In addition, immunocytochemistry and electron microscopy revealed a significant expansion of the perijunctional actomyosin ring associated with the AJ. These structural changes are accompanied by a recruitment of 1-phosphomyosin light chain and Rho kinase 1, contraction of the actomyosin ring, and expansion of the apical domain. Despite these changes in the apical cytoskeleton, there are no detectable changes in cell polarity, localization of AJ proteins, or the organization of the basal and lateral actin cytoskeleton. We conclude that ZO proteins are required not only for TJ assembly but also for regulating the organization and functional activity of the apical cytoskeleton, particularly the perijunctional actomyosin ring, and we speculate that these activities are relevant both to cellular organization and epithelial morphogenesis.


Zonula occludens and nasal epithelial barrier integrity in allergic rhinitis.

  • Che Othman Siti Sarah‎ et al.
  • PeerJ‎
  • 2020‎

Allergic rhinitis (AR) is a common disease affecting 400 million of the population worldwide. Nasal epithelial cells form a barrier against the invasion of environmental pathogens. These nasal epithelial cells are connected together by tight junction (TJ) proteins including zonula occludens-1 (ZO-1), ZO-2 and ZO-3. Impairment of ZO proteins are observed in AR patients whereby dysfunction of ZOs allows allergens to pass the nasal passage into the subepithelium causing AR development. In this review, we discuss ZO proteins and their impairment leading to AR, regulation of their expression by Th1 cytokines (i.e., IL-2, TNF-α and IFN-γ), Th2 cytokines (i.e., IL-4 and IL-13) and histone deacetylases (i.e., HDAC1 and HDAC2). These findings are pivotal for future development of targeted therapies by restoring ZO protein expression and improving nasal epithelial barrier integrity in AR patients.


Tight function zonula occludens-3 regulates cyclin D1-dependent cell proliferation.

  • Christopher T Capaldo‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Coordinated regulation of cell proliferation is vital for epithelial tissue homeostasis, and uncontrolled proliferation is a hallmark of carcinogenesis. A growing body of evidence indicates that epithelial tight junctions (TJs) play a role in these processes, although the mechanisms involved are poorly understood. In this study, we identify and characterize a novel plasma membrane pool of cyclin D1 with cell-cycle regulatory functions. We have determined that the zonula occludens (ZO) family of TJ plaque proteins sequesters cyclin D1 at TJs during mitosis, through an evolutionarily conserved class II PSD-95, Dlg, and ZO-1 (PDZ)-binding motif within cyclin D1. Disruption of the cyclin D1/ZO complex through mutagenesis or siRNA-mediated suppression of ZO-3 resulted in increased cyclin D1 proteolysis and G(0)/G(1) cell-cycle retention. This study highlights an important new role for ZO family TJ proteins in regulating epithelial cell proliferation through stabilization of cyclin D1 during mitosis.


Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions.

  • Barbara Schlingmann‎ et al.
  • Nature communications‎
  • 2016‎

Claudins are tetraspan transmembrane tight-junction proteins that regulate epithelial barriers. In the distal airspaces of the lung, alveolar epithelial tight junctions are crucial to regulate airspace fluid. Chronic alcohol abuse weakens alveolar tight junctions, priming the lung for acute respiratory distress syndrome, a frequently lethal condition caused by airspace flooding. Here we demonstrate that in response to alcohol, increased claudin-5 paradoxically accompanies an increase in paracellular leak and rearrangement of alveolar tight junctions. Claudin-5 is necessary and sufficient to diminish alveolar epithelial barrier function by impairing the ability of claudin-18 to interact with a scaffold protein, zonula occludens 1 (ZO-1), demonstrating that one claudin affects the ability of another claudin to interact with the tight-junction scaffold. Critically, a claudin-5 peptide mimetic reverses the deleterious effects of alcohol on alveolar barrier function. Thus, claudin controlled claudin-scaffold protein interactions are a novel target to regulate tight-junction permeability.


Bacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression.

  • Min Jeong Gu‎ et al.
  • Asian-Australasian journal of animal sciences‎
  • 2014‎

Intestinal epithelial cells (IECs) forming the barrier for the first-line of protection are interconnected by tight junction (TJ) proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR) 2 ligands and some bacteria enhance epithelial barrier function in humans and mice. However, no such study has yet to be claimed in swine. The aim of the present study was to examine whether Bacillus subtilis could improve barrier integrity and protection against deoxynivalenol (DON)-induced barrier disruption in porcine intestinal epithelial cell line (IPEC-J2). We found that B. subtilis decreased permeability of TJ and improved the expression of zonula occludens (ZO)-1 and occludin during the process of forming TJ. In addition, ZO-1 expression of IPEC-J2 cells treated with B. subtilis was up-regulated against DON-induced damage. In conclusion, B. subtilis may have potential to enhance epithelial barrier function and to prevent the cells from DON-induced barrier dysfunction.


The human PDZome: a gateway to PSD95-Disc large-zonula occludens (PDZ)-mediated functions.

  • Edwige Belotti‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2013‎

Protein-protein interactions organize the localization, clustering, signal transduction, and degradation of cellular proteins and are therefore implicated in numerous biological functions. These interactions are mediated by specialized domains able to bind to modified or unmodified peptides present in binding partners. Among the most broadly distributed protein interaction domains, PSD95-disc large-zonula occludens (PDZ) domains are usually able to bind carboxy-terminal sequences of their partners. In an effort to accelerate the discovery of PDZ domain interactions, we have constructed an array displaying 96% of the human PDZ domains that is amenable to rapid two-hybrid screens in yeast. We have demonstrated that this array can efficiently identify interactions using carboxy-terminal sequences of PDZ domain binders such as the E6 oncoviral protein and protein kinases (PDGFRβ, BRSK2, PCTK1, ACVR2B, and HER4); this has been validated via mass spectrometry analysis. Taking advantage of this array, we show that PDZ domains of Scrib and SNX27 bind to the carboxy-terminal region of the planar cell polarity receptor Vangl2. We also have demonstrated the requirement of Scrib for the promigratory function of Vangl2 and described the morphogenetic function of SNX27 in the early Xenopus embryo. The resource presented here is thus adapted for the screen of PDZ interactors and, furthermore, should facilitate the understanding of PDZ-mediated functions.


Zonula occludens 2 and Cell-Cell Contacts Are Required for Normal Nuclear Shape in Epithelia.

  • Christian Hernández-Guzmán‎ et al.
  • Cells‎
  • 2021‎

MAGUK protein ZO-2 is present at tight junctions (TJs) and nuclei. In MDCK ZO-2 knockdown (KD) cells, nuclei exhibit an irregular shape with lobules and indentations. This condition correlates with an increase in DNA double strand breaks, however cells are not senescent and instead become resistant to UV-induced senescence. The irregular nuclear shape is also observed in isolated cells and in those without TJs, due to the lack of extracellular calcium. The aberrant nuclear shape of ZO-2 KD cells is not accompanied by a reduced expression of lamins A/C and B and lamin B receptors. Instead, it involves a decrease in constitutive and facultative heterochromatin, and microtubule instability that is restored with docetaxel. ZO-2 KD cells over-express SUN-1 that crosses the inner nuclear membrane and connects the nucleoskeleton of lamin A to nesprins, which traverse the outer nuclear membrane. Nesprins-3 and -4 that indirectly bind on their cytoplasmic face to vimentin and microtubules, respectively, are also over-expressed in ZO-2 KD cells, whereas vimentin is depleted. SUN-1 and lamin B1 co-immunoprecipitate with ZO-2, and SUN-1 associates to ZO-2 in a pull-down assay. Our results suggest that ZO-2 forms a complex with SUN-1 and lamin B1 at the inner nuclear membrane, and that ZO-2 and cell-cell contacts are required for a normal nuclear shape.


Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation.

  • Yuka Miyake‎ et al.
  • Experimental cell research‎
  • 2006‎

The adherens junction (AJ) densely associated with actin filaments is a major cell-cell adhesion structure. To understand the importance of actin filament association in AJ formation, we first analyzed punctate AJs in NRK fibroblasts where one actin cable binds to one AJ structure unit. The accumulation of AJ components such as the cadherin/catenin complex and vinculin, as well as the formation of AJ-associated actin cables depended on Rho activity. Inhibitors for the Rho target, ROCK, which regulates myosin II activity, and for myosin II ATPase prevented the accumulation of AJ components, indicating that myosin II activity is more directly involved than Rho activity. Depletion of myosin II by RNAi showed similar results. The inhibition of myosin II activity in polarized epithelial MTD-1A cells affected the accumulation of vinculin to circumferential AJ (zonula adherens). Furthermore, correct zonula occludens (tight junction) formation along the apicobasal axis that requires cadherin activity was also impaired. Although MDCK cells which are often used as typical epithelial cells do not have a typical zonula adherens, punctate AJs formed dependently on myosin II activity by inducing wound closure in a MDCK cell sheet. These findings suggest that tension generated by actomyosin is essential for correct AJ assembly.


Altered Expression of Zonula occludens-1 Affects Cardiac Na+ Channels and Increases Susceptibility to Ventricular Arrhythmias.

  • Mona El Refaey‎ et al.
  • Cells‎
  • 2022‎

Zonula occludens-1 (ZO-1) is an intracellular scaffolding protein that orchestrates the anchoring of membrane proteins to the cytoskeleton in epithelial and specialized tissue including the heart. There is clear evidence to support the central role of intracellular auxiliary proteins in arrhythmogenesis and previous studies have found altered ZO-1 expression associated with atrioventricular conduction abnormalities. Here, using human cardiac tissues, we identified all three isoforms of ZO-1, canonical (Transcript Variant 1, TV1), CRA_e (Transcript Variant 4, TV4), and an additionally expressed (Transcript Variant 3, TV3) in non-failing myocardium. To investigate the role of ZO-1 on ventricular arrhythmogenesis, we generated a haploinsufficient ZO-1 mouse model (ZO-1+/-). ZO-1+/- mice exhibited dysregulated connexin-43 protein expression and localization at the intercalated disc. While ZO-1+/- mice did not display abnormal cardiac function at baseline, adrenergic challenge resulted in rhythm abnormalities, including premature ventricular contractions and bigeminy. At baseline, ventricular myocytes from the ZO-1+/- mice displayed prolonged action potential duration and spontaneous depolarizations, with ZO-1+/- cells displaying frequent unsolicited (non-paced) diastolic depolarizations leading to spontaneous activity with multiple early afterdepolarizations (EADs). Mechanistically, ZO-1 deficient myocytes displayed a reduction in sodium current density (INa) and an increased sensitivity to isoproterenol stimulation. Further, ZO-1 deficient myocytes displayed remodeling in ICa current, likely a compensatory change. Taken together, our data suggest that ZO-1 deficiency results in myocardial substrate susceptible to triggered arrhythmias.


Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo.

  • S J Bolton‎ et al.
  • Neuroscience‎
  • 1998‎

The tight junctions found between cerebral vascular endothelial cells form the basis of the blood-brain barrier. Breakdown of the blood-brain barrier is a feature of a variety of CNS pathologies that are characterized by extensive leucocyte recruitment, such as multiple sclerosis and stroke. The molecular mechanisms associated with opening of the blood-brain barrier and leucocyte recruitment in vivo are currently poorly understood. We have used an in vivo rat model to investigate the molecular response of the CNS endothelium to neutrophil adhesion and migration. Injection of interleukin-1 beta into the striatum of juvenile brains results in a neutrophil-dependent increase in vessel permeability at 4 h. Only a subset of blood vessels were associated with neutrophil recruitment. These particular vessels displayed an increase in phosphotyrosine staining, loss of the tight junctional proteins, occludin and zonula occludens-1, and apparent redistribution of the adherens junction protein vinculin. Examination of these vessels under the electron microscope indicated that the cell-cell adhesions in such vessels are morphologically different from normal junctions. This study provides the first direct evidence in vivo that leucocyte recruitment can trigger signal transduction cascades leading to junctional disorganization and blood-brain barrier breakdown. Our results have established an endothelial cell molecular profile associated with leucocyte-induced blood-brain barrier breakdown in vivo, and the relevance of different in vitro cell culture models may now be viewed more objectively.


Inflammation-related downregulation of zonula Occludens-1 in fetal membrane contributes to development of prelabor rupture of membranes.

  • Juan Li‎ et al.
  • Placenta‎
  • 2020‎

The aim of this research was to study the alteration of three key tight junction proteins, to explore whether they were involved in the occurrence of prelabor rupture of the membrane (PROM) and to determine the correlation with intrauterine infection.


Increased interaction of connexin43 with zonula occludens-1 during inhibition of gap junctions by G protein-coupled receptor agonists.

  • Martine Tencé‎ et al.
  • Cellular signalling‎
  • 2012‎

Astrocytes are extensively coupled through gap junctions (GJs) that are composed of channels mostly constituted by connexin43 (Cx43). This astroglial gap junctional intercellular communication (GJIC) allows propagation of ions and signaling molecules critical for neuronal activity and survival. It is drastically inhibited by a short-term exposure to endothelin-1 (ET-1) or to sphingosine-1-phosphate (S1P), both compounds being inflammatory mediators acting through activation of GTP-binding protein-coupled receptors (GPCRs). Previously, we have identified the GTPases G(i/o) and Rho as key actors in the process of S1P-induced inhibition. Here, we asked whether similar mechanisms underlied the effects of ET-1 and S1P by investigating changes in the phosphorylation status of Cx43 and in the molecular associations of Cx43 with zonula occludens (ZO) proteins and occludin. We showed that the inhibitory effect of ET-1 on GJIC was entirely dependent on the activation of G(i/o) but not on Rho and Rho-associated kinase. Both ET-1 and S1P induced dephosphorylation of Cx43 located at GJs through a process mediated by G(i/o) and calcineurin. Thanks to co-immunoprecipitation approaches, we found that a population of Cx43 (likely junctional Cx43) was associated to ZO-1-ZO-2-occludin multiprotein complexes and that acute treatments of astrocytes with ET-1 or S1P induced a G(i/o)-dependent increase in the amount of Cx43 linked to these complexes. As a whole, this study identifies a new mechanism of GJIC regulation in which two GPCR agonists dynamically alter interactions of Cx43 with its molecular partners.


Expression of myoferlin in human airway epithelium and its role in cell adhesion and zonula occludens-1 expression.

  • Cleo Leung‎ et al.
  • PloS one‎
  • 2012‎

Normal airway epithelial barrier function is maintained by cell-cell contacts which require the translocation of adhesion proteins at the cell surface, through membrane vesicle trafficking and fusion events. Myoferlin and dysferlin, members of the multiple-C2-domain Ferlin superfamily, have been implicated in membrane fusion processes through the induction of membrane curvature. The objectives of this study were to examine the expression of dysferlin and myoferlin within the human airway and determine the roles of these proteins in airway epithelial homeostasis.


RBM38 is involved in TGF-β-induced epithelial-to-mesenchymal transition by stabilising zonula occludens-1 mRNA in breast cancer.

  • Jing Wu‎ et al.
  • British journal of cancer‎
  • 2017‎

The transforming growth factor-β (TGF-β) pathway plays a vital role in driving cancer cell epithelial-mesenchymal transition (EMT). Zonula occludens-1 (ZO-1), which is downregulated in response to TGF-β, is able to control endothelial cell-cell tension, cell migration, and barrier formation. However, the molecular mechanism of how TGF-β regulates ZO-1 expression remains unclear.


Proteomic screening identifies the zonula occludens protein ZO-1 as a new partner for ADAM12 in invadopodia-like structures.

  • Bassil Dekky‎ et al.
  • Oncotarget‎
  • 2018‎

The epithelial mesenchymal transition (EMT) is a key process for cancer cell invasion and migration. This complex program whereby epithelial tumor cells loose polarity and acquire mesenchymal phenotype is driven by the regulation of cell-cell adhesion and cell-substrate interactions. We recently described the association of ADAM12 with EMT and we now use immunoprecipitation and proteomic approaches to identify interacting partners for ADAM12 during EMT. We identify twenty proteins that are involved in molecular mechanisms associated with adhesion/invasion processes. Integrative network analyses point out the zonula occludens protein ZO-1, as a new potential partner for ADAM12. In silico screening demonstrates that ZO-1 and ADAM12 are coexpressed in breast cancer cell lines sharing EMT signature. We validate the interaction between ZO-1 and ADAM12 in invasive breast cancer cell lines and show that ZO-1 and ADAM12 co-localize in actin- and cortactin-rich structures. Silencing either ADAM12 or ZO-1 inhibits gelatin degradation demonstrating that both proteins are required for matrix degradation. We further show that matrix metalloprotease 14, known to mediate degradation of collagen in invadopodia-like structures interacts with ZO-1. Depletion of PKCε that regulates the recruitment of ADAM12 and ZO-1 to cell membranes induces a decrease in ADAM12 and ZO-1 at invadopodia-like structures and degradation activity. Together our data provide evidence for a new interaction between ADAM12, a mesenchymal marker induced during TGF-β-dependent EMT and ZO-1, a scaffolding protein expressed in tight junctions of epithelial cells, both proteins being redistributed at the invadopodia-like structures of mesenchymal invasive cells to promote PKCε-dependent matrix degradation.


Analysis of the Zonula occludens Toxin Found in the Genome of the Chilean Non-toxigenic Vibrio parahaemolyticus Strain PMC53.7.

  • Diliana Pérez-Reytor‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2020‎

Vibrio parahaemolyticus non-toxigenic strains are responsible for about 10% of acute gastroenteritis associated with this species, suggesting they harbor unique virulence factors. Zonula occludens toxin (Zot), firstly described in Vibrio cholerae, is a secreted toxin that increases intestinal permeability. Recently, we identified Zot-encoding genes in the genomes of highly cytotoxic Chilean V. parahaemolyticus strains, including the non-toxigenic clinical strain PMC53.7. To gain insights into a possible role of Zot in V. parahaemolyticus, we analyzed whether it could be responsible for cytotoxicity. However, we observed a barely positive correlation between Caco-2 cell membrane damage and Zot mRNA expression during PMC53.7 infection and non-cytotoxicity induction in response to purified PMC53.7-Zot. Unusually, we observed a particular actin disturbance on cells infected with PMC53.7. Based on this observation, we decided to compare the sequence of PMC53.7-Zot with Zot of human pathogenic species such as V. cholerae, Campylobacter concisus, Neisseria meningitidis, and other V. parahaemolyticus strains, using computational tools. The PMC53.7-Zot was compared with other toxins and identified as an endotoxin with conserved motifs in the N-terminus and a variable C-terminal region and without FCIGRL peptide. Notably, the C-terminal diversity among Zots meant that not all of them could be identified as toxins. Structurally, PMC53.7-Zot was modeled as a transmembrane protein. Our results suggested that it has partial 3D structure similarity with V. cholerae-Zot. Probably, the PMC53.7-Zot would affect the actin cytoskeletal, but, in the absence of FCIGRL, the mechanisms of actions must be elucidated.


7-Oxygenated cholesterol molecules differentially affect the expression of zonula occludens-1 in vascular smooth muscle cells and monocyte/macrophage cells.

  • Hyok-Rae Cho‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

To investigate the effects of 7-oxygenated cholesterol molecules on the expression of tight junction proteins, we examined the outcomes effects of 7-ketocholesterol (7K), 7α-hydroxycholesterol (7αOHChol) and 7β-hydroxycholesterol (7βOHChol) on the expression of the tight-junction protein zonula occludens-1 (ZO-1) using vascular cells. Vascular smooth muscle cells (VSMCs) constitutively express ZO-1, and this expression remained unaffected in the presence of cholesterol. However, the level of ZO-1 protein decreased after exposure to 7K and, to a lesser extent, 7αOHChol and 7βOHChol. ZO-1 was translocated to the nucleus following treatment with 7K; this translocation was inhibited by z-VAD-fmk, a pan-caspase inhibitor. ZO-1 protein was found to disintegrate in the aorta of ApoE knockout mice fed a high cholesterol diet, whereas it remained intact in the wild-type control. THP-1 monocyte/macrophage cells, which show no expression of ZO-1, were not influenced by treatment with cholesterol, 7K, and 7βOHChol. However, the treatment of THP-1 cells with 7αOHChol resulted in ZO-1 expression, which largely remained localized on the cytoplasmic membrane. These results indicate the varying effects of 7-oxygenated cholesterol molecules on the expression and localization of ZO-1 depending on cell types, and suggest the contribution of 7-oxygeneted cholesterol molecules to the structural alteration of tight junctions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: