Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 19,459 papers

DOE JGI Metagenome Workflow.

  • Alicia Clum‎ et al.
  • mSystems‎
  • 2021‎

The DOE Joint Genome Institute (JGI) Metagenome Workflow performs metagenome data processing, including assembly; structural, functional, and taxonomic annotation; and binning of metagenomic data sets that are subsequently included into the Integrated Microbial Genomes and Microbiomes (IMG/M) (I.-M. A. Chen, K. Chu, K. Palaniappan, A. Ratner, et al., Nucleic Acids Res, 49:D751-D763, 2021, https://doi.org/10.1093/nar/gkaa939) comparative analysis system and provided for download via the JGI data portal (https://genome.jgi.doe.gov/portal/). This workflow scales to run on thousands of metagenome samples per year, which can vary by the complexity of microbial communities and sequencing depth. Here, we describe the different tools, databases, and parameters used at different steps of the workflow to help with the interpretation of metagenome data available in IMG and to enable researchers to apply this workflow to their own data. We use 20 publicly available sediment metagenomes to illustrate the computing requirements for the different steps and highlight the typical results of data processing. The workflow modules for read filtering and metagenome assembly are available as a workflow description language (WDL) file (https://code.jgi.doe.gov/BFoster/jgi_meta_wdl). The workflow modules for annotation and binning are provided as a service to the user community at https://img.jgi.doe.gov/submit and require filling out the project and associated metadata descriptions in the Genomes OnLine Database (GOLD) (S. Mukherjee, D. Stamatis, J. Bertsch, G. Ovchinnikova, et al., Nucleic Acids Res, 49:D723-D733, 2021, https://doi.org/10.1093/nar/gkaa983).IMPORTANCE The DOE JGI Metagenome Workflow is designed for processing metagenomic data sets starting from Illumina fastq files. It performs data preprocessing, error correction, assembly, structural and functional annotation, and binning. The results of processing are provided in several standard formats, such as fasta and gff, and can be used for subsequent integration into the Integrated Microbial Genomes and Microbiomes (IMG/M) system where they can be compared to a comprehensive set of publicly available metagenomes. As of 30 July 2020, 7,155 JGI metagenomes have been processed by the DOE JGI Metagenome Workflow. Here, we present a metagenome workflow developed at the JGI that generates rich data in standard formats and has been optimized for downstream analyses ranging from assessment of the functional and taxonomic composition of microbial communities to genome-resolved metagenomics and the identification and characterization of novel taxa. This workflow is currently being used to analyze thousands of metagenomic data sets in a consistent and standardized manner.


SPIM workflow manager for HPC.

  • Jan Kožusznik‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2019‎

Here we introduce a Fiji plugin utilizing the HPC-as-a-Service concept, significantly mitigating the challenges life scientists face when delegating complex data-intensive processing workflows to HPC clusters. We demonstrate on a common Selective Plane Illumination Microscopy image processing task that execution of a Fiji workflow on a remote supercomputer leads to improved turnaround time despite the data transfer overhead. The plugin allows the end users to conveniently transfer image data to remote HPC resources, manage pipeline jobs and visualize processed results directly from the Fiji graphical user interface.


Secret3D Workflow for Secretome Analysis.

  • Vittoria Matafora‎ et al.
  • STAR protocols‎
  • 2020‎

Secretome analysis is crucial to unravel extracellular processes. However, secreted proteins are difficult to detect in mass-spectrometry-based analysis due to contamination of serum proteins deriving from cell culture media and to high glycosylation, which hampers tryptic digestion. Secret3D workflow is an optimized protocol for the global analysis of secretome from in vitro cultured cells. It allows efficient and robust protein identification and quantitation and provides information on putative N-glycosylation sites of the secreted proteins. For complete details on the use and execution of this protocol, please refer to Matafora et al. (2020).


Text mining for the biocuration workflow.

  • Lynette Hirschman‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2012‎

Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on 'Text Mining for the BioCuration Workflow' at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community.


Swabs to genomes: a comprehensive workflow.

  • Madison I Dunitz‎ et al.
  • PeerJ‎
  • 2015‎

The sequencing, assembly, and basic analysis of microbial genomes, once a painstaking and expensive undertaking, has become much easier for research labs with access to standard molecular biology and computational tools. However, there are a confusing variety of options available for DNA library preparation and sequencing, and inexperience with bioinformatics can pose a significant barrier to entry for many who may be interested in microbial genomics. The objective of the present study was to design, test, troubleshoot, and publish a simple, comprehensive workflow from the collection of an environmental sample (a swab) to a published microbial genome; empowering even a lab or classroom with limited resources and bioinformatics experience to perform it.


Benchmarking cryo-EM Single Particle Analysis Workflow.

  • Laura Y Kim‎ et al.
  • Frontiers in molecular biosciences‎
  • 2018‎

Cryo electron microscopy facilities running multiple instruments and serving users with varying skill levels need a robust and reliable method for benchmarking both the hardware and software components of their single particle analysis workflow. The workflow is complex, with many bottlenecks existing at the specimen preparation, data collection and image analysis steps; the samples and grid preparation can be of unpredictable quality, there are many different protocols for microscope and camera settings, and there is a myriad of software programs for analysis that can depend on dozens of settings chosen by the user. For this reason, we believe it is important to benchmark the entire workflow, using a standard sample and standard operating procedures, on a regular basis. This provides confidence that all aspects of the pipeline are capable of producing maps to high resolution. Here we describe benchmarking procedures using a test sample, rabbit muscle aldolase.


Genomic variant annotation workflow for clinical applications.

  • Thomas Thurnherr‎ et al.
  • F1000Research‎
  • 2016‎

Annotation and interpretation of DNA aberrations identified through next-generation sequencing is becoming an increasingly important task. Even more so in the context of data analysis pipelines for medical applications, where genomic aberrations are associated with phenotypic and clinical features. Here we describe a workflow to identify potential gene targets in aberrated genes or pathways and their corresponding drugs. To this end, we provide the R/Bioconductor package rDGIdb, an R wrapper to query the drug-gene interaction database (DGIdb). DGIdb accumulates drug-gene interaction data from 15 different resources and allows filtering on different levels. The rDGIdb package makes these resources and tools available to R users. Moreover, rDGIdb queries can be automated through incorporation of the rDGIdb package into NGS sequencing pipelines.


A simplified workflow for monoclonal antibody sequencing.

  • Lena Meyer‎ et al.
  • PloS one‎
  • 2019‎

The diversity of antibody variable regions makes cDNA sequencing challenging, and conventional monoclonal antibody cDNA amplification requires the use of degenerate primers. Here, we describe a simplified workflow for amplification of IgG antibody variable regions from hybridoma RNA by a specialized RT-PCR followed by Sanger sequencing. We perform three separate reactions for each hybridoma: one each for kappa, lambda, and heavy chain transcripts. We prime reverse transcription with a primer specific to the respective constant region and use a template-switch oligonucleotide, which creates a custom sequence at the 5' end of the antibody cDNA. This template-switching circumvents the issue of low sequence homology and the need for degenerate primers. Instead, subsequent PCR amplification of the antibody cDNA molecules requires only two primers: one primer specific for the template-switch oligonucleotide sequence and a nested primer to the respective constant region. We successfully sequenced the variable regions of five mouse monoclonal IgG antibodies using this method, which enabled us to design chimeric mouse/human antibody expression plasmids for recombinant antibody production in mammalian cell culture expression systems. All five recombinant antibodies bind their respective antigens with high affinity, confirming that the amino acid sequences determined by our method are correct and demonstrating the high success rate of our method. Furthermore, we also designed RT-PCR primers and amplified the variable regions from RNA of cells transfected with chimeric mouse/human antibody expression plasmids, showing that our approach is also applicable to IgG antibodies of human origin. Our monoclonal antibody sequencing method is highly accurate, user-friendly, and very cost-effective.


Fast sequence-based microsatellite genotyping development workflow.

  • Olivier Lepais‎ et al.
  • PeerJ‎
  • 2020‎

Application of high-throughput sequencing technologies to microsatellite genotyping (SSRseq) has been shown to remove many of the limitations of electrophoresis-based methods and to refine inference of population genetic diversity and structure. We present here a streamlined SSRseq development workflow that includes microsatellite development, multiplexed marker amplification and sequencing, and automated bioinformatics data analysis. We illustrate its application to five groups of species across phyla (fungi, plant, insect and fish) with different levels of genomic resource availability. We found that relying on previously developed microsatellite assay is not optimal and leads to a resulting low number of reliable locus being genotyped. In contrast, de novo ad hoc primer designs gives highly multiplexed microsatellite assays that can be sequenced to produce high quality genotypes for 20-40 loci. We highlight critical upfront development factors to consider for effective SSRseq setup in a wide range of situations. Sequence analysis accounting for all linked polymorphisms along the sequence quickly generates a powerful multi-allelic haplotype-based genotypic dataset, calling to new theoretical and analytical frameworks to extract more information from multi-nucleotide polymorphism marker systems.


Quantification of Surgical Workflow during Robotic Proctectomy.

  • Mishal Gillani‎ et al.
  • Research square‎
  • 2023‎

Assessments of surgical workflow offer insight regarding procedure variability, case complexity and surgeon proficiency. We utilize an objective method to evaluate step-by-step workflow and step transitions during robotic proctectomy (RP).


Agile parallel bioinformatics workflow management using Pwrake.

  • Hiroyuki Mishima‎ et al.
  • BMC research notes‎
  • 2011‎

In bioinformatics projects, scientific workflow systems are widely used to manage computational procedures. Full-featured workflow systems have been proposed to fulfil the demand for workflow management. However, such systems tend to be over-weighted for actual bioinformatics practices. We realize that quick deployment of cutting-edge software implementing advanced algorithms and data formats, and continuous adaptation to changes in computational resources and the environment are often prioritized in scientific workflow management. These features have a greater affinity with the agile software development method through iterative development phases after trial and error.Here, we show the application of a scientific workflow system Pwrake to bioinformatics workflows. Pwrake is a parallel workflow extension of Ruby's standard build tool Rake, the flexibility of which has been demonstrated in the astronomy domain. Therefore, we hypothesize that Pwrake also has advantages in actual bioinformatics workflows.


systemPipeR: NGS workflow and report generation environment.

  • Tyler W H Backman‎ et al.
  • BMC bioinformatics‎
  • 2016‎

Next-generation sequencing (NGS) has revolutionized how research is carried out in many areas of biology and medicine. However, the analysis of NGS data remains a major obstacle to the efficient utilization of the technology, as it requires complex multi-step processing of big data demanding considerable computational expertise from users. While substantial effort has been invested on the development of software dedicated to the individual analysis steps of NGS experiments, insufficient resources are currently available for integrating the individual software components within the widely used R/Bioconductor environment into automated workflows capable of running the analysis of most types of NGS applications from start-to-finish in a time-efficient and reproducible manner.


Cytoscape Automation: empowering workflow-based network analysis.

  • David Otasek‎ et al.
  • Genome biology‎
  • 2019‎

Cytoscape is one of the most successful network biology analysis and visualization tools, but because of its interactive nature, its role in creating reproducible, scalable, and novel workflows has been limited. We describe Cytoscape Automation (CA), which marries Cytoscape to highly productive workflow systems, for example, Python/R in Jupyter/RStudio. We expose over 270 Cytoscape core functions and 34 Cytoscape apps as REST-callable functions with standardized JSON interfaces backed by Swagger documentation. Independent projects to create and publish Python/R native CA interface libraries have reached an advanced stage, and a number of automation workflows are already published.


An integrated workflow for crosslinking mass spectrometry.

  • Marta L Mendes‎ et al.
  • Molecular systems biology‎
  • 2019‎

We present a concise workflow to enhance the mass spectrometric detection of crosslinked peptides by introducing sequential digestion and the crosslink identification software xiSEARCH. Sequential digestion enhances peptide detection by selective shortening of long tryptic peptides. We demonstrate our simple 12-fraction protocol for crosslinked multi-protein complexes and cell lysates, quantitative analysis, and high-density crosslinking, without requiring specific crosslinker features. This overall approach reveals dynamic protein-protein interaction sites, which are accessible, have fundamental functional relevance and are therefore ideally suited for the development of small molecule inhibitors.


rANOMALY: AmplicoN wOrkflow for Microbial community AnaLYsis.

  • Sebastien Theil‎ et al.
  • F1000Research‎
  • 2021‎

Bioinformatic tools for marker gene sequencing data analysis are continuously and rapidly evolving, thus integrating most recent techniques and tools is challenging. We present an R package for data analysis of 16S and ITS amplicons based sequencing. This workflow is based on several R functions and performs automatic treatments from fastq sequence files to diversity and differential analysis with statistical validation. The main purpose of this package is to automate bioinformatic analysis, ensure reproducibility between projects, and to be flexible enough to quickly integrate new bioinformatic tools or statistical methods. rANOMALY is an easy to install and customizable R package, that uses amplicon sequence variants (ASV) level for microbial community characterization. It integrates all assets of the latest bioinformatics methods, such as better sequence tracking, decontamination from control samples, use of multiple reference databases for taxonomic annotation, all main ecological analysis for which we propose advanced statistical tests, and a cross-validated differential analysis by four different methods. Our package produces ready to publish figures, and all of its outputs are made to be integrated in Rmarkdown code to produce automated reports.


BrainAGE: Revisited and reframed machine learning workflow.

  • Polona Kalc‎ et al.
  • Human brain mapping‎
  • 2024‎

Since the introduction of the BrainAGE method, novel machine learning methods for brain age prediction have continued to emerge. The idea of estimating the chronological age from magnetic resonance images proved to be an interesting field of research due to the relative simplicity of its interpretation and its potential use as a biomarker of brain health. We revised our previous BrainAGE approach, originally utilising relevance vector regression (RVR), and substituted it with Gaussian process regression (GPR), which enables more stable processing of larger datasets, such as the UK Biobank (UKB). In addition, we extended the global BrainAGE approach to regional BrainAGE, providing spatially specific scores for five brain lobes per hemisphere. We tested the performance of the new algorithms under several different conditions and investigated their validity on the ADNI and schizophrenia samples, as well as on a synthetic dataset of neocortical thinning. The results show an improved performance of the reframed global model on the UKB sample with a mean absolute error (MAE) of less than 2 years and a significant difference in BrainAGE between healthy participants and patients with Alzheimer's disease and schizophrenia. Moreover, the workings of the algorithm show meaningful effects for a simulated neocortical atrophy dataset. The regional BrainAGE model performed well on two clinical samples, showing disease-specific patterns for different levels of impairment. The results demonstrate that the new improved algorithms provide reliable and valid brain age estimations.


CODA: a combo-Seq data analysis workflow.

  • Marta Nazzari‎ et al.
  • Briefings in bioinformatics‎
  • 2023‎

The analysis of the combined mRNA and miRNA content of a biological sample can be of interest for answering several research questions, like biomarkers discovery, or mRNA-miRNA interactions. However, the process is costly and time-consuming, separate libraries need to be prepared and sequenced on different flowcells. Combo-Seq is a library prep kit that allows us to prepare combined mRNA-miRNA libraries starting from very low total RNA. To date, no dedicated bioinformatics method exists for the processing of Combo-Seq data. In this paper, we describe CODA (Combo-seq Data Analysis), a workflow specifically developed for the processing of Combo-Seq data that employs existing free-to-use tools. We compare CODA with exceRpt, the pipeline suggested by the kit manufacturer for this purpose. We also evaluate how Combo-Seq libraries analysed with CODA perform compared with conventional poly(A) and small RNA libraries prepared from the same samples. We show that using CODA more successfully trimmed reads are recovered compared with exceRpt, and the difference is more dramatic with short sequencing reads. We demonstrate how Combo-Seq identifies as many genes and fewer miRNAs compared to the standard libraries, and how miRNA validation favours conventional small RNA libraries over Combo-Seq. The CODA code is available at https://github.com/marta-nazzari/CODA.


Guide to Metabolomics Analysis: A Bioinformatics Workflow.

  • Yang Chen‎ et al.
  • Metabolites‎
  • 2022‎

Metabolomics is an emerging field that quantifies numerous metabolites systematically. The key purpose of metabolomics is to identify the metabolites corresponding to each biological phenotype, and then provide an analysis of the mechanisms involved. Although metabolomics is important to understand the involved biological phenomena, the approach's ability to obtain an exhaustive description of the processes is limited. Thus, an analysis-integrated metabolomics, transcriptomics, proteomics, and other omics approach is recommended. Such integration of different omics data requires specialized statistical and bioinformatics software. This review focuses on the steps involved in metabolomics research and summarizes several main tools for metabolomics analyses. We also outline the most abnormal metabolic pathways in several cancers and diseases, and discuss the importance of multi-omics integration algorithms. Overall, our goal is to summarize the current metabolomics analysis workflow and its main analysis software to provide useful insights for researchers to establish a preferable pipeline of metabolomics or multi-omics analysis.


Automated workflow composition in mass spectrometry-based proteomics.

  • Magnus Palmblad‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2019‎

Numerous software utilities operating on mass spectrometry (MS) data are described in the literature and provide specific operations as building blocks for the assembly of on-purpose workflows. Working out which tools and combinations are applicable or optimal in practice is often hard. Thus researchers face difficulties in selecting practical and effective data analysis pipelines for a specific experimental design.


Spherical: an iterative workflow for assembling metagenomic datasets.

  • Thomas C A Hitch‎ et al.
  • BMC bioinformatics‎
  • 2018‎

The consensus emerging from the study of microbiomes is that they are far more complex than previously thought, requiring better assemblies and increasingly deeper sequencing. However, current metagenomic assembly techniques regularly fail to incorporate all, or even the majority in some cases, of the sequence information generated for many microbiomes, negating this effort. This can especially bias the information gathered and the perceived importance of the minor taxa in a microbiome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: