Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 90 papers

Zika virus E protein dysregulate mir-204/WNT2 signalling in human fetal neural stem cells.

  • Reshma Bhagat‎ et al.
  • Brain research bulletin‎
  • 2021‎

Zika Virus (ZIKV) belongs to the family of flaviviruses, and is neurotrophic. It has been known to cause severe congenital disabilities including microcephaly in neonates. The virus has a specific preference towards neural stem cells (NSCs). ZIKV impairs proliferation and differentiation of NSCs during in-utero brain development of the fetus. However, molecular pathways involved in ZIKV induced alteration in NSCs are yet to be explored. In our previous study, we have described that ZIKV E protein dysregulates microRNA circuitry in NSCs and also impairs their proliferative and differentiation abilities. WNT signalling was found to be the target of differentially expressed miRNAs as suggested by PANTHER PATHWAY analysis of differentially expressed miRNA targets. In our current follow-up study, we investigate that WNT2 is downregulated in response to ZIKV E protein in human fetal NSCs and WNT2 is the molecular target of microRNA miR-204-5p. We provide pieces of evidences that miR-204-5p/WNT2 axis is involved in ZIKV induced impairment in the proliferation and immature differentiation of neural stem cells.


Long non-coding RNA LINC00968 attenuates drug resistance of breast cancer cells through inhibiting the Wnt2/β-catenin signaling pathway by regulating WNT2.

  • Dian-Hui Xiu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

Breast cancer is one the most common cancers, making it the second leading cause of cancer-related death among women. Long non-coding RNAs (lncRNAs), with tightly regulated expression patterns, also serve as tumor suppressor during tumorigenesis. The present study aimed to elucidate the role of LINC00968 in breast cancer via WNT2-mediated Wnt2/β-catenin signaling pathway.


Mutations in Wnt2 alter presynaptic motor neuron morphology and presynaptic protein localization at the Drosophila neuromuscular junction.

  • Faith L W Liebl‎ et al.
  • PloS one‎
  • 2010‎

Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins.


Distinguishing colorectal adenoma from hyperplastic polyp by WNT2 expression.

  • Bangting Wang‎ et al.
  • Journal of clinical laboratory analysis‎
  • 2021‎

Colorectal adenoma (CRA) is a classical premalignant lesion, with high incidence and mainly coexisting with hyperplastic polyp (HPP). Hence, this study aimed to distinguish CRA from HPP by molecular expression profiling and advance the prevention of CRA and its malignance.


IRES-mediated Wnt2 translation in apoptotic neurons triggers astrocyte dedifferentiation.

  • Hong Fan‎ et al.
  • NPJ Regenerative medicine‎
  • 2022‎

Reactive astrogliosis usually bears some properties of neural progenitors. How injury triggers astrocyte dedifferentiation remains largely unclear. Here, we report that ischemia induces rapid up-regulation of Wnt2 protein in apoptotic neurons and activation of canonical Wnt signaling in reactive astrocytes in mice, primates and human. Local delivery of Wnt2 shRNA abolished the dedifferentiation of astrocytes while over-expressing Wnt2 promoted progenitor marker expression and neurogenesis. Both the activation of Wnt signaling and dedifferentiation of astrocytes was compromised in ischemic caspase-3-/- cortex. Over-expressing stabilized β-catenin not only facilitated neurogenesis but also promoted functional recovery in ischemic caspase-3-/- mice. Further analysis showed that apoptotic neurons up-regulated Wnt2 protein via internal ribosome entry site (IRES)-mediated translation. Knocking down death associated protein 5 (DAP5), a key protein in IRES-mediated protein translation, significantly diminished Wnt activation and astrocyte dedifferentiation. Our data demonstrated an apoptosis-initiated Wnt-activating mechanism which triggers astrocytic dedifferentiation and facilitates neuronal regeneration.


Clinical Correlation of Wnt2 and COL8A1 With Colon Adenocarcinoma Prognosis.

  • Lihua Zhang‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Wnt2 mRNA is widely expressed in various tumor tissues. Wnt2 overexpression promotes tumor growth, migration, invasion, and metastasis. However, its underlying molecular action mechanisms and clinical implications in colon adenocarcinoma (COAD) remain unclear. mRNA expression data, obtained from tissue samples, and pathophysiological data of 368 COAD patients were obtained from the Cancer Genome Atlas (TCGA) database. Further, Pearson's correlation analysis was performed to explore the correlation between the expression levels of Wnt2 and other genes in the human genome. Subsequently, a protein-protein interaction (PPI) network was constructed for hub gene identification. Overall survival and significance were determined by Kaplan-Meier analysis, and the log-rank test was used to further identify genes with prognostic significance in COAD from GEO datasets (GSE17538 and GSE39582). Subsequently, 158 tissue samples from Affiliated Hospital of Jiangnan University were used for expression verification. Gene set enrichment analysis (GSEA) was performed on high and low Wnt2 expression datasets to identify potential signaling pathways activated in COAD. In all, 10 hub genes associated with Wnt2 were screened by Pearson's correlation analysis and PPI network, with Wnt2 and COL8A1 having significantly poor prognosis by Kaplan-Meier analysis and log-rank test. Furthermore, high expressions of COL8A1 and Wnt2 were associated with poor survival both in TCGA and GEO cohorts. We further found a correlation between the expressions of Wnt2 and COL8A1 in COAD as per immunohistochemical analysis. To further elucidate the underlying molecular mechanisms of Wnt2 in COAD, we searched for pathways enriched in Wnt2 overexpressing datasets by GSEA. Our findings revealed that high Wnt2 levels were significantly associated with extracellular matrix receptor and focal adhesion pathways. Wnt2 expression correlated with COL8A1 expression in COAD; patients with high Wnt2 and COL8A1 expressions had worse survival outcomes. Pathways identified in this study prompt the molecular role of Wnt2 in COAD and provide directions to further elucidate the involved molecular mechanisms in COAD.


WNT2-Mediated FZD2 Stabilization Regulates Esophageal Cancer Metastasis via STAT3 Signaling.

  • Yufei Fu‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Esophageal cancer micro environment factor WNT2 was critical in cancer metastasis. However, very little is known about WNT2 receptors and their role in the malignant progression of ESCC. The clinical significance and underlying molecular mechanisms of FZD2, one of the receptors of WNT2, was further investigated in ESCC. We found that FZD2 expression was positively correlated with WNT2 levels in clinical ESCC specimens through database analysis. Upregulated FZD2 expression was detected in 69% (69/100) of the primary ESCC cases examined, and increased FZD2 expression was significantly correlated with poor prognosis (P < 0.05). Mechanistically, FZD2 induced the migration and invasion of ESCC cells by regulating the FZD2/STAT3 signaling. In vivo xenograft experiments further revealed the metastasis-promoting role of FZD2 in ESCC. Moreover, we found that the WNT2 ligand could stabilize and phosphorylate the FZD2 receptor by attenuating FZD2 ubiquitination, leading to the activation of STAT3 signaling and the initiation of ESCC cell metastasis. Collectively, our data revealed that a novel non-canonical WNT2/FZD2/STAT3 signaling axis is critical for ESCC progression. Strategies targeting this specific signaling axis might be developed to treat patients with ESCC.


Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer.

  • Daniela Unterleuthner‎ et al.
  • Angiogenesis‎
  • 2020‎

WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.


Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach.

  • Hourieh Kalhor‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2020‎

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target. The aim of this study was to identify potential drug candidates against two binding sites of Wnt2. Structure-based virtual screening approaches were applied to identify compounds against binding sites of Wnt2 for inhibiting the interaction Wnt2 and Fzd receptors. The best hit compounds from molecular docking of National Cancer Institute diversity set II database were used for structural similarity search on ZINC database, obtaining large hit compounds query to perform a virtual screening and retrieving potential lead compounds. Eight lead compounds were selected while their binding affinity, binding modes interactions, and molecular dynamics simulations studies were assessed. Molecular docking studies showed that eight selected lead compounds can bind to the desired binding sites of Wnt2 in a high affinity manner. Bioavailability analysis of the selected lead compounds indicated that they possessed significant drug like properties. Thus, these lead compounds were considered as potential drug candidates for inhibiting Wnt signaling pathway through combining with the binding sites of Wnt2 and hindering the interaction of Wnt2 and Fzd receptors. Our findings suggest that Wnt2 binding sites may be a useful target for treatment for CRC fueling the future efforts for developing new compounds against Wnt signaling pathway.


The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors.

  • W-J Zhou‎ et al.
  • Translational psychiatry‎
  • 2016‎

Wnts-related signaling pathways have been reported to play roles in the pathogenesis of stress-induced depression-like behaviors. However, there is relatively few direct evidence to indicate the effect of Wnt ligands on this process. Here, we investigated the role of Wnts in mediating chronic restraint stress (CRS)-induced depression-like behaviors. We found that CRS induced a significant decrease in the expression of Wnt2 and Wnt3 in the ventral hippocampus (VH) but not in the dorsal hippocampus. Knocking down Wnt2 or Wnt3 in the VH led to impaired Wnt/β-catenin signaling, neurogenesis deficits and depression-like behaviors. In contrast, overexpression of Wnt2 or Wnt3 reversed CRS-induced depression-like behaviors. Moreover, Wnt2 and Wnt3 activated cAMP response element-binding protein (CREB) and there was CREB-dependent positive feedback between Wnt2 and Wnt3. Finally, fluoxetine treatment increased Wnt2 and Wnt3 levels in the VH and knocking down Wnt2 or Wnt3 abolished the antidepressant effect of fluoxetine. Taken together, our study indicates essential roles for Wnt2 and Wnt3 in CRS-induced depression-like behaviors and antidepressant.


Mechanical stiffness promotes skin fibrosis via Piezo1-Wnt2/Wnt11-CCL24 positive feedback loop.

  • Jiahao He‎ et al.
  • Cell death & disease‎
  • 2024‎

Skin fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) caused by fibrotic disorders of the skin. In recent years, ECM stiffness has emerged as a prominent mechanical cue that precedes skin fibrosis and drives its progression by promoting fibroblasts activation. However, how stiffness influences fibroblasts activation for skin fibrosis progression remains unknown. Here, we report a positive feedback loop mediated by the mechanosensitive ion channel Piezo1 and aberrant tissue mechanics in driving skin fibrosis. Piezo1 is upregulated in fibrotic skin in both humans and mice. Piezo1 knockdown dermal fibroblasts lose their fibroproliferative phenotypes despite being grown on a stiffer substrate. We show that Piezo1 acts through the Wnt2/Wnt11 pathway to mechanically induce secretion of C-C motif chemokine ligand 24 (CCL24, also known as eotaxin-2), a potent cytokine associated with fibrotic disorders. Importantly, adeno-associated virus (AAV)-mediated Piezo1 knockdown ameliorated the progression of skin fibrosis and skin stiffness in mice. Overall, increased matrix stiffness promotes skin fibrosis through the inflammatory Piezo1-Wnt2/Wnt11-CCL24 pathway. In turn, a stiffer skin microenvironment increases Piezo1 expression to exacerbate skin fibrosis aggression. Therefore, targeting Piezo1 represents a strategy to break the positive feedback loop between fibroblasts mechanotransduction and aberrant tissue mechanics in skin fibrosis.


Wnt2 contributes to the progression of gastric cancer by promoting cell migration and invasion.

  • Zhaoran Zhang‎ et al.
  • Oncology letters‎
  • 2018‎

Wnt2 plays a pivotal role in human cancer. However, it is not yet known whether Wnt2 contributes to promoting migration and invasion of gastric cancer. The present study aimed to investigate the expression of Wnt2 in gastric cancer tissues and cell lines, and to analyze the effect of Wnt2 on gastric cancer cells. Wnt2 expression level was evaluated in gastric cancer samples and adjacent normal gastric tissues by immunohistochemical and western blot analysis. To investigate the effect of Wnt2 on gastric cancer cells, an in vitro Wnt2 secreting system was established using CHO cells. The results indicated that Wnt2 is overexpressed in gastric cancer and is implicated in metastasis and TNM stage. Additionally, the results of in vitro experiments demonstrated that Wnt2 contributes to enhancing the migration and invasion abilities of gastric cancer cells. These results suggested that Wnt2 may be an effective target of treatment for patients with advanced gastric cancer.


Cancer-associated fibroblasts secrete Wnt2 to promote cancer progression in colorectal cancer.

  • Takashi Aizawa‎ et al.
  • Cancer medicine‎
  • 2019‎

Recent studies have shown that the tumor microenvironment plays a significant role in the progression of solid tumors. As an abundant component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) have been shown to promote tumorigenesis and cancer aggressiveness, but their molecular characteristics remain poorly understood. In the present study, paired CAFs and normal fibroblasts (NFs) were isolated from five colorectal cancer (CRC) tissues from patients who underwent surgical resection. The gene expression profiles of CAFs and NFs identified by RNA sequencing were compared to understand the complex role of CAFs in cancer progression. Gene Set Enrichment Analysis revealed that the gene sets related to the Wnt signaling pathway were highly enriched in CAFs, as well as TGFβ signaling, which is considered to be a regulator of CAFs. Among the components of this pathway, Wnt2 was specifically expressed. The observations led us to speculate that Wnt2 is extremely involved in regulating CRC progression by CAFs. Thus, we performed immunohistochemical analysis on Wnt2 in 171 patients who underwent surgery for colorectal adenocarcinoma. Positive staining for Wnt2 was mainly observed in cancer stroma, although the immunoreactivity was weak in cancer cells. Wnt2 expression in CAFs was significantly correlated with depth of tumor (P < .001), lymph node metastasis (P = .044), TNM stage (P = .010), venous invasion (P < .001), and recurrence (P = .013). Subsequent in vitro analyses were conducted using conditioned medium (CM) from immortalized CAFs transfected with siRNA targeting Wnt2. As a result, cancer cell invasion and migration were significantly decreased in the CM from immortalized CAFs transfected with siRNA targeting Wnt2. Our findings indicated that Wnt2 protein released from CAFs enhances CRC cell invasion and migration. In conclusion, Wnt2 secreted by CAFs plays a key role in cancer progression and is a potential therapeutic target for CRC.


WNT2 activation through proximal germline deletion predisposes to small intestinal neuroendocrine tumors and intestinal adenocarcinomas.

  • Mervi Aavikko‎ et al.
  • Human molecular genetics‎
  • 2021‎

Many hereditary cancer syndromes are associated with an increased risk of small and large intestinal adenocarcinomas. However, conditions bearing a high risk to both adenocarcinomas and neuroendocrine tumors are yet to be described. We studied a family with 16 individuals in four generations affected by a wide spectrum of intestinal tumors, including hyperplastic polyps, adenomas, small intestinal neuroendocrine tumors, and colorectal and small intestinal adenocarcinomas. To assess the genetic susceptibility and understand the novel phenotype, we utilized multiple molecular methods, including whole genome sequencing, RNA sequencing, single cell sequencing, RNA in situ hybridization and organoid culture. We detected a heterozygous deletion at the cystic fibrosis locus (7q31.2) perfectly segregating with the intestinal tumor predisposition in the family. The deletion removes a topologically associating domain border between CFTR and WNT2, aberrantly activating WNT2 in the intestinal epithelium. These consequences suggest that the deletion predisposes to small intestinal neuroendocrine tumors and small and large intestinal adenocarcinomas, and reveals the broad tumorigenic effects of aberrant WNT activation in the human intestine.


Wnt2 knock down by RNAi inhibits the proliferation of in vitro-cultured human keloid fibroblasts.

  • Yumei Cai‎ et al.
  • Medicine‎
  • 2018‎

To study the effect of knocking down wingless-related MMTV integration site 2 (Wnt2) expression by RNAi on the growth and signaling pathways of ex vitro-cultured keloid fibroblasts (KFB).Human KFB were isolated from 10 keloid patient specimens. The KFB cells were then transfected with 4 pairs of small interfering RNA (siRNA) targeting human Wnt2, respectively. Reverse transcriptase-polymerase chain reaction and Western blot analysis were conducted to verify the knock down of Wnt2, and the expression of β-catenin glycogen synthase kinase-3β (GSK-3β) and cyclin D1 were examined.siRNA Wnt2 transfection (siWnt2) resulted in the significant inhibition of Wnt2 expression at both the mRNA and protein levels. The expression of β-catenin, GSK-3β, p-GSK-3β, and cyclin D1 at the protein level also decreased in siWnt2 cells. siWnt2 resulted in a substantially slower growth and significant delay in cell doubling time of the KFB cells compared with control groups. Further, the siRNA knock down of GSK-3β and β-catenin resulted in slower proliferation rates, respectively.Wnt2 siRNA has an inhibitive effect on keloid fibroblast proliferation, which may be a potential therapeutic approach for keloid and other human fibrotic diseases.


MicroRNAs Profiling Identifies miR-125a and Its Target Gene Wnt2 in Skins of Different Haired Rabbits.

  • Yang Chen‎ et al.
  • Frontiers in genetics‎
  • 2018‎

MicroRNAs (miRNAs) play critical roles in the control of skin and hair follicle development, epidermal homeostasis and pigmentation. However, the roles of miRNAs in the skins of rabbits with different hair types are unclear. In this study, we profiled miRNAs in the skins of long and short haired rabbits by Illumina deep sequencing. The dataset was compared with known mammalian miRNAs in miRBase 21.0. In total, 118 miRNAs were found to be differentially expressed between the two different rabbit types, of which 94 were upregulated, and 24 were downregulated in the skin of short haired vs. long haired rabbits. The expression levels of five randomly selected miRNAs detected by quantitative real-time PCR indicated that the expression patterns were consistent with Illumina sequencing results. What's more, bioinformatics analysis showed that miR-125a might target Wnt2, an important modulator for hair follicle development. To test whether Wnt2 is a target of miR-125a, luciferase reporter vector (pMir-report-Wnt2-3'-UTR-WT) and its substitution mutant (pMir-report-Wnt2-3'-UTR-MUT) were constructed. Co-transfection and reporter enzyme assays showed that compared with control (miR-125a NC transfection), miR-125a mimics transfection significantly inhibited the reporter luciferase activities expressed by pMir-report-Wnt2-3'-UTR-WT, while transfection of miR-125a inhibitors increased reporter enzyme activities. RT-PCR and Simple Western analysis found that Wnt2 mRNA and protein levels were induced or repressed by miR-125a overexpression or inhibition, respectively. Moreover, the mRNA expression levels of genes in Wnt signaling pathway, such as CTNNB1, LEF-1, PPARD and TGFB1, were also significantly changed (P < 0.05), consistent with Wnt2. It indicated that the regulation of Wnt2 expression by miRNAs may depend on the transcriptional degradation. The results will help to further understand the role of miRNAs in hair follicle development and the genetic mechanism underlying hair length phenotype.


Identification and Expression Analysis of Wnt2 Gene in the Sex Differentiation of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis).

  • Tong Zhou‎ et al.
  • Life (Basel, Switzerland)‎
  • 2023‎

The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important freshwater aquaculture animal in China. The Wnt gene family plays important regulatory roles in the development and growth of mammals. However, the precise function of these family genes has not been well understood in the sex differentiation of Chinese soft-shelled turtles. Here, we cloned a member of the Wnt family, Wnt2, which obtained a 1077 bp open reading frame that encoded a 358-aa protein. The putative amino acid sequences of proteins are exceeded 80% identical to other turtles. The expression level of Wnt2 peaked at the 14th stage both in female and male embryos during the early gonadal differentiation period of Chinese soft-shelled turtles, which occurred before gonadal differentiation. Wnt2 mRNA was expressed at higher levels in the brains and gonads of mature P. sinensis females compared with those in mature males. Wnt agonists significantly affected the expression level of Wnt2 during the gonadal differentiation period. After Wnt agonists (1.0 μg/μL, 2.5 μg/μL, 5.0 μg/μL) treatment, the expression level of the Wnt2 generally appeared to have an inverted-V trend over time in female embryonic gonads. The results suggested that Wnt2 may participate in the regulation of gonad development in P. sinensis during the early embryonic stages. These results could provide a theoretical basis for the reproduction process of the Chinese soft-shelled turtle.


Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b.

  • Shikai Hu‎ et al.
  • Cell reports. Medicine‎
  • 2022‎

The conclusive identity of Wnts regulating liver zonation (LZ) and regeneration (LR) remains unclear despite an undisputed role of β-catenin. Using single-cell analysis, we identified a conserved Wnt2 and Wnt9b expression in endothelial cells (ECs) in zone 3. EC-elimination of Wnt2 and Wnt9b led to both loss of β-catenin targets in zone 3, and re-appearance of zone 1 genes in zone 3, unraveling dynamicity in the LZ process. Impaired LR observed in the knockouts phenocopied models of defective hepatic Wnt signaling. Administration of a tetravalent antibody to activate Wnt signaling rescued LZ and LR in the knockouts and induced zone 3 gene expression and LR in controls. Administration of the agonist also promoted LR in acetaminophen overdose acute liver failure (ALF) fulfilling an unmet clinical need. Overall, we report an unequivocal role of EC-Wnt2 and Wnt9b in LZ and LR and show the role of Wnt activators as regenerative therapy for ALF.


Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9.

  • Qiaozhen Wang‎ et al.
  • PloS one‎
  • 2017‎

Osteosarcoma (OS) is an aggressive bone tumor, and proto-oncogene c-Fos is involved in this lethal disease. However, the role and molecular mechanism of c-Fos in the development and progression of OS remain enigmatic. As one of the Wnt family members, Wnt2 is closely associated with the development of several malignant tumors. In the present study, the expression of c-Fos, Wnt2, and its receptor Fzd9 in human OS tissues, MG63 OS cell line, and human osteoblast hFOB 1.19 cell line was detected by Western blot analysis, immunohistochemical staining, or reverse transcription-polymerase chain reaction. The role of c-Fos in the OS was clarified by treating MG63 cells with small interfering RNA to knockdown c-Fos. Then, cell migration and invasion were assayed by transwell assays and wound healing assay; cell proliferation was assayed by MTS method and 5-ethynyl-2'-deoxyuridine DNA proliferation in vitro detection; cell apoptosis was assayed by flow cytometric method. Co-immunoprecipitation kit was used to confirm the relationship between c-Fos and Wnt2/Fzd9. We found that the expression of c-Fos, Wnt2, and Fzd9 protein was distinctly higher in human OS tissues than that in the adjacent non-cancerous tissues, and their expression in the MG63 OS cell line was markedly increased compared with that in the human osteoblast hFOB 1.19 cell line. Knockdown of c-Fos inhibited the proliferation, migration, and invasion of MG63 cells, and promoted the apoptosis of MG63 cells. Moreover, knockdown of c-Fos inhibited the expression of Wnt2 and Fzd9 mRNA and protein. Our data enforced the evidence that knockdown of c-Fos inhibited cell proliferation, migration, and invasion, and promoted the apoptosis of OS cells accompanied by altered expression of Wnt2 and Fzd9. These findings offer new clues for OS development and progression, and c-Fos may be a potential therapeutic target for OS.


The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila Wnt2 required for male fertility.

  • Karen Linnemannstöns‎ et al.
  • PLoS genetics‎
  • 2014‎

Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-receptor required for control of planar cell polarity (PCP) in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk) are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964), which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: