Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 292 papers

Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing.

  • Baolei Yuan‎ et al.
  • Nature communications‎
  • 2022‎

The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.


Autoimmunity in Wiskott-Aldrich Syndrome: Updated Perspectives.

  • Murugan Sudhakar‎ et al.
  • The application of clinical genetics‎
  • 2021‎

Wiskott-Aldrich syndrome (WAS) is an uncommon X-linked combined-immunodeficiency disorder characterized by a triad of thrombocytopenia, eczema, and immunodeficiency. Patients with WAS are also predisposed to autoimmunity and malignancy. Autoimmune manifestations have been reported in 26%-72% of patients with WAS. Autoimmunity is an independent predictor of poor prognosis and predisposes to malignancy. Development of autoimmunity is also an early pointer of the need for hematopoietic stem-cell transplantation. In this manuscript, we have collated the published data and present a narrative review on autoimmune manifestations in WAS. A summary of currently proposed immunopathogenic mechanisms and genetic variants associated with development of autoimmunity in WAS is also included.


Neural Wiskott-Aldrich syndrome protein (nWASP) is implicated in human lung cancer invasion.

  • Bethan A Frugtniet‎ et al.
  • BMC cancer‎
  • 2017‎

Lung cancer is one of the most commonly diagnosed cancers with survival much lower in patients diagnosed with distal metastases. It is therefore imperative to identify pathways involved in lung cancer invasion and metastasis and to consider the therapeutic potential of agents that can interfere with these molecular pathways. This study examines nWASP expression in human lung cancer tissues and explores the effect of nWASP inhibition and knockdown on lung cancer cell behaviour.


The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function.

  • Michela Locci‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

The Wiskott-Aldrich syndrome (WAS) protein (WASp) is a regulator of actin cytoskeleton in hematopoietic cells. Mutations of the WASp gene cause WAS. Although WASp is involved in various immune cell functions, its role in invariant natural killer T (iNKT) cells has never been investigated. Defects of iNKT cells could indeed contribute to several WAS features, such as recurrent infections and high tumor incidence. We found a profound reduction of circulating iNKT cells in WAS patients, directly correlating with the severity of clinical phenotype. To better characterize iNKT cell defect in the absence of WASp, we analyzed was(-/-) mice. iNKT cell numbers were significantly reduced in the thymus and periphery of was(-/-) mice as compared with wild-type controls. Moreover analysis of was(-/-) iNKT cell maturation revealed a complete arrest at the CD44(+) NK1.1(-) intermediate stage. Notably, generation of BM chimeras demonstrated a was(-/-) iNKT cell-autonomous developmental defect. was(-/-) iNKT cells were also functionally impaired, as suggested by the reduced secretion of interleukin 4 and interferon gamma upon in vivo activation. Altogether, these results demonstrate the relevance of WASp in integrating signals critical for development and functional differentiation of iNKT cells and suggest that defects in these cells may play a role in WAS pathology.


Wiskott-Aldrich syndrome protein regulates autophagy and inflammasome activity in innate immune cells.

  • Pamela P Lee‎ et al.
  • Nature communications‎
  • 2017‎

Dysregulation of autophagy and inflammasome activity contributes to the development of auto-inflammatory diseases. Emerging evidence highlights the importance of the actin cytoskeleton in modulating inflammatory responses. Here we show that deficiency of Wiskott-Aldrich syndrome protein (WASp), which signals to the actin cytoskeleton, modulates autophagy and inflammasome function. In a model of sterile inflammation utilizing TLR4 ligation followed by ATP or nigericin treatment, inflammasome activation is enhanced in monocytes from WAS patients and in WAS-knockout mouse dendritic cells. In ex vivo models of enteropathogenic Escherichia coli and Shigella flexneri infection, WASp deficiency causes defective bacterial clearance, excessive inflammasome activation and host cell death that are associated with dysregulated septin cage-like formation, impaired autophagic p62/LC3 recruitment and defective formation of canonical autophagosomes. Taken together, we propose that dysregulation of autophagy and inflammasome activities contribute to the autoinflammatory manifestations of WAS, thereby identifying potential targets for therapeutic intervention.


Whole Wiskott‑Aldrich syndrome protein gene deletion identified by high throughput sequencing.

  • Xiangling He‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Wiskott‑Aldrich syndrome (WAS) is a rare X‑linked recessive immunodeficiency disorder, characterized by thrombocytopenia, small platelets, eczema and recurrent infections associated with increased risk of autoimmunity and malignancy disorders. Mutations in the WAS protein (WASP) gene are responsible for WAS. To date, WASP mutations, including missense/nonsense, splicing, small deletions, small insertions, gross deletions, and gross insertions have been identified in patients with WAS. In addition, WASP‑interacting proteins are suspected in patients with clinical features of WAS, in whom the WASP gene sequence and mRNA levels are normal. The present study aimed to investigate the application of next generation sequencing in definitive diagnosis and clinical therapy for WAS. A 5 month‑old child with WAS who displayed symptoms of thrombocytopenia was examined. Whole exome sequence analysis of genomic DNA showed that the coverage and depth of WASP were extremely low. Quantitative polymerase chain reaction indicated total WASP gene deletion in the proband. In conclusion, high throughput sequencing is useful for the verification of WAS on the genetic profile, and has implications for family planning guidance and establishment of clinical programs.


Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes.

  • Giulia Maria Piperno‎ et al.
  • JCI insight‎
  • 2020‎

Dysregulated sensing of self-nucleic acid is a leading cause of autoimmunity in multifactorial and monogenic diseases. Mutations in Wiskott-Aldrich syndrome protein (WASp), a key regulator of cytoskeletal dynamics in immune cells, cause autoimmune manifestations and increased production of type I IFNs by innate cells. Here we show that immune complexes of self-DNA and autoantibodies (DNA-ICs) contribute to elevated IFN levels via activation of the cGAS/STING pathway of cytosolic sensing. Mechanistically, lack of endosomal F-actin nucleation by WASp caused a delay in endolysosomal maturation and prolonged the transit time of ingested DNA-ICs. Stalling in maturation-defective organelles facilitated leakage of DNA-ICs into the cytosol, promoting activation of the TBK1/STING pathway. Genetic deletion of STING and STING and cGAS chemical inhibitors abolished IFN production and rescued systemic activation of IFN-stimulated genes in vivo. These data unveil the contribution of cytosolic self-nucleic acid sensing in WAS and underscore the importance of WASp-mediated endosomal actin remodeling in preventing innate activation.


Screening for Wiskott-Aldrich syndrome by flow cytometry.

  • Samuel C C Chiang‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2018‎

No abstract available


Childhood-onset inflammatory bowel diseases associated with mutation of Wiskott-Aldrich syndrome protein gene.

  • Takashi Ohya‎ et al.
  • World journal of gastroenterology‎
  • 2017‎

To screen primary immunodeficiency, Wiskott-Aldrich syndrome (WAS), and chronic granulomatous disease (CGD) among children with inflammatory bowel disease (IBD).


Tricornered Kinase Regulates Synapse Development by Regulating the Levels of Wiskott-Aldrich Syndrome Protein.

  • Rajalaxmi Natarajan‎ et al.
  • PloS one‎
  • 2015‎

Precise regulation of synapses during development is essential to ensure accurate neural connectivity and function of nervous system. Many signaling pathways, including the mTOR (mechanical Target of Rapamycin) pathway operate in neurons to maintain genetically determined number of synapses during development. mTOR, a kinase, is shared between two functionally distinct multi-protein complexes- mTORC1 and mTORC2, that act downstream of Tuberous Sclerosis Complex (TSC). We and others have suggested an important role for TSC in synapse development at the Drosophila neuromuscular junction (NMJ) synapses. In addition, our data suggested that the regulation of the NMJ synapse numbers in Drosophila largely depends on signaling via mTORC2. In the present study, we further this observation by identifying Tricornered (Trc) kinase, a serine/threonine kinase as a likely mediator of TSC signaling. trc genetically interacts with Tsc2 to regulate the number of synapses. In addition, Tsc2 and trc mutants exhibit a dramatic reduction in synaptic levels of WASP, an important regulator of actin polymerization. We show that Trc regulates the WASP levels largely, by regulating the transcription of WASP. Finally, we show that overexpression of WASP (Wiskott-Aldrich Syndrome Protein) in trc mutants can suppress the increase in the number of synapses observed in trc mutants, suggesting that WASP regulates synapses downstream of Trc. Thus, our data provide a novel insight into how Trc may regulate the genetic program that controls the number of synapses during development.


Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis.

  • Almut Meyer-Bahlburg‎ et al.
  • Blood‎
  • 2008‎

To more precisely identify the B-cell phenotype in Wiskott-Aldrich syndrome (WAS), we used 3 distinct murine in vivo models to define the cell intrinsic requirements for WAS protein (WASp) in central versus peripheral B-cell development. Whereas WASp is dispensable for early bone marrow B-cell development, WASp deficiency results in a marked reduction in each of the major mature peripheral B-cell subsets, exerting the greatest impact on marginal zone and B1a B cells. Using in vivo bromodeoxyuridine labeling and in vitro functional assays, we show that these deficits reflect altered peripheral homeostasis, partially resulting from an impairment in integrin function, rather than a developmental defect. Consistent with these observations, we also show that: (1) WASp expression levels increase with cell maturity, peaking in those subsets exhibiting the greatest sensitivity to WASp deficiency; (2) WASp(+) murine B cells exhibit a marked selective advantage beginning at the late transitional B-cell stage; and (3) a similar in vivo selective advantage is manifest by mature WASp(+) human B cells. Together, our data provide a better understanding of the clinical phenotype of WAS and suggest that gene therapy might be a useful approach to rescue altered B-cell homeostasis in this disease.


Development of IgA nephropathy-like glomerulonephritis associated with Wiskott-Aldrich syndrome protein deficiency.

  • M Shimizu‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2012‎

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder caused by mutations in the WAS gene. Glomerulonephritis is a frequent complication, however, histopathological data from affected patients is scarce because the thrombocytopenia that affects most patients is a contraindication to renal biopsies. We found that WASp-deficient mice develop proliferative glomerulonephritis reminiscent of human IgA nephropathy (IgAN). We examined whether increased aberrant IgA production is associated with the development of glomerulonephritis in WASp-deficient mice. Serum IgA and IgA production by splenic B cells was increased in WASp-deficient mice compared to wild-type (WT) mice. A lectin-binding study revealed a reduced ratio of sialylated and galactosylated IgA in the sera from old WASp-deficient mice. Circulating IgA-containing immune complexes showed significantly higher titers in WASp-deficient mice compared to WT mice. These results indicate that the increased IgA production and aberrant glycosylation of IgA may be critically involved in the pathogenesis of glomerulonephritis in WAS.


Wiskott Aldrich Syndrome: A Multi-Institutional Experience From India.

  • Deepti Suri‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Wiskott Aldrich syndrome (WAS) is characterized by bleeding manifestations, recurrent infections, eczema, autoimmunity, and malignancy. Over the last decade, improved awareness and better in-house diagnostic facilities at several centers in India has resulted in increased recognition of WAS. This study reports collated data across major primary immunodeficiency diseases (PID) centers in India that are involved in care of children with WAS and highlights the varied clinical presentations, genetic profile, and outcomes of patients in India.


Wiskott-Aldrich syndrome protein interacts and inhibits diacylglycerol kinase alpha promoting IL-2 induction.

  • Suresh Velnati‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Phosphorylation of diacylglycerol by diacylglycerol-kinases represents a major inhibitory event constraining T cell activation upon antigen engagement. Efficient TCR signalling requires the inhibition of the alpha isoform of diacylglycerol kinase, DGKα, by an unidentified signalling pathway triggered by the protein adaptor SAP. We previously demonstrated that, in SAP absence, excessive DGKα activity makes the T cells resistant to restimulation-induced cell death (RICD), an apoptotic program counteracting excessive T cell clonal expansion.


Wiskott Aldrich syndrome protein regulates non-selective autophagy and mitochondrial homeostasis in human myeloid cells.

  • Elizabeth Rivers‎ et al.
  • eLife‎
  • 2020‎

The actin cytoskeletal regulator Wiskott Aldrich syndrome protein (WASp) has been implicated in maintenance of the autophagy-inflammasome axis in innate murine immune cells. Here, we show that WASp deficiency is associated with impaired rapamycin-induced autophagosome formation and trafficking to lysosomes in primary human monocyte-derived macrophages (MDMs). WASp reconstitution in vitro and in WAS patients following clinical gene therapy restores autophagic flux and is dependent on the actin-related protein complex ARP2/3. Induction of mitochondrial damage with CCCP, as a model of selective autophagy, also reveals a novel ARP2/3-dependent role for WASp in formation of sequestrating actin cages and maintenance of mitochondrial network integrity. Furthermore, mitochondrial respiration is suppressed in WAS patient MDMs and unable to achieve normal maximal activity when stressed, indicating profound intrinsic metabolic dysfunction. Taken together, we provide evidence of new and important roles of human WASp in autophagic processes and immunometabolic regulation, which may mechanistically contribute to the complex WAS immunophenotype.


Exacerbated experimental arthritis in Wiskott-Aldrich syndrome protein deficiency: modulatory role of regulatory B cells.

  • Gerben Bouma‎ et al.
  • European journal of immunology‎
  • 2014‎

Patients deficient in the cytoskeletal regulator Wiskott-Aldrich syndrome protein (WASp) are predisposed to varied autoimmunity, suggesting it has an important controlling role in participating cells. IL-10-producing regulatory B (Breg) cells are emerging as important mediators of immunosuppressive activity. In experimental, antigen-induced arthritis WASp-deficient (WASp knockout [WAS KO]) mice developed exacerbated disease associated with decreased Breg cells and regulatory T (Treg) cells, but increased Th17 cells in knee-draining LNs. Arthritic WAS KO mice showed increased serum levels of B-cell-activating factor, while their B cells were unresponsive in terms of B-cell-activating factor induced survival and IL-10 production. Adoptive transfer of WT Breg cells ameliorated arthritis in WAS KO recipients and restored a normal balance of Treg and Th17 cells. Mice with B-cell-restricted WASp deficiency, however, did not develop exacerbated arthritis, despite exhibiting reduced Breg- and Treg-cell numbers during active disease, and Th17 cells were not increased over equivalent WT levels. These findings support a contributory role for defective Breg cells in the development of WAS-related autoimmunity, but demonstrate that functional competence in other regulatory populations can be compensatory. A properly regulated cytoskeleton is therefore important for normal Breg-cell activity and complementation of defects in this lineage is likely to have important therapeutic benefits.


Genetic characteristics of eighty-seven patients with the Wiskott-Aldrich syndrome.

  • Vera Gulácsy‎ et al.
  • Molecular immunology‎
  • 2011‎

The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immune deficiency disorder characterized by thrombocytopenia, small platelet size, eczema, recurrent infections, and increased risk of autoimmune disorders and malignancies. WAS is caused by mutations in the WASP gene which encodes WASP, a 502-amino acid protein. WASP plays a critical role in actin cytoskeleton organization and signalling, and functions of immune cells. We present here the results of genetic analysis of patients with WAS from eleven Eastern and Central European (ECE) countries and Turkey. Clinical and haematological information of 87 affected males and 48 carrier females from 77 WAS families were collected. The WASP gene was sequenced from genomic DNA of patients with WAS, as well as their family members to identify carriers. In this large cohort, we identified 62 unique mutations including 17 novel sequence variants. The mutations were scattered throughout the WASP gene and included single base pair changes (17 missense and 11 nonsense mutations), 7 small insertions, 18 deletions, and 9 splice site defects. Genetic counselling and prenatal diagnosis were applied in four affected families. This study was part of the J Project aimed at identifying genetic basis of primary immunodeficiency disease in ECE countries. This report provides the first comprehensive overview of the molecular genetic and demographic features of WAS in ECE.


Nuclear Wiskott-Aldrich syndrome protein co-regulates T cell factor 1-mediated transcription in T cells.

  • Nikolai V Kuznetsov‎ et al.
  • Genome medicine‎
  • 2017‎

The Wiskott-Aldrich syndrome protein (WASp) family of actin-nucleating factors are present in the cytoplasm and in the nucleus. The role of nuclear WASp for T cell development remains incompletely defined.


Wiskott-Aldrich syndrome protein may be critical for CD8+ T cell function following MCMV infection.

  • Sha Li‎ et al.
  • Cellular immunology‎
  • 2019‎

Wiskott-Aldrich syndrome (WAS) patients are characterized by immunodeficiency and viral infections. T cells derived from WAS patients and WAS protein (WASP)-deficient mice have various defects. However, whether WASP plays a role in immune control of cytomegalovirus (CMV) infection remains unclear. We analyzed the distribution of CD8+ T subsets and the pathological damage to various organs and tissues in MCMV infected Was knockout (KO) mice. A relatively high number of MCMV-specific cytotoxic T cells (CTLs) were observed in the spleen of Was KO mice. In MCMV infected Was KO mice, the late differentiated CD8+ T subset (CD27-CD28-) decreased in lungs, compared with those in the spleen and peripheral blood. Additionally, we found that the most severe pathological lesions occurred in the lungs, the main target organ of MCMV infection. By stimulating the spleen-derived CD8+ T lymphocytes of Was KO mice, we found that IL-2 and granzyme B production declined compared with that in wild- type mice. Moreover, the number of apoptotic CD8+ T cells increased in Was KO mice compared with the number in wild-type mice. Therefore, our results demonstrate that WASP may be involved in regulating cytotoxic function and apoptosis in CD8+ T cells following MCMV infection, which is supported by the distribution and memory compartment of MCMV-specific T cells in MCMV infected WAS mice.


Modelling of human Wiskott-Aldrich syndrome protein mutants in zebrafish larvae using in vivo live imaging.

  • Rebecca A Jones‎ et al.
  • Journal of cell science‎
  • 2013‎

Wiskott-Aldrich syndrome (WAS) and X-linked neutropenia (XLN) are immunodeficiencies in which the function of several haematopoietic cell lineages is perturbed as a result of mutations in the actin regulator WASp. From in vitro cell biology experiments, and biochemical and structural approaches, we know much about the functional domains of WASp and how WASp might regulate the dynamic actin cytoskeleton downstream of activators such as Cdc42, but in vivo experiments are much more challenging. In patients, there is a correlation between clinical disease and genotype, with severe reductions in WASp expression or function associating with complex multilineage immunodeficiency, whereas specific mutations that cause constitutive activation of WASp result in congenital neutropenia. Here, we take advantage of the genetic tractability and translucency of zebrafish larvae to first characterise how a null mutant in zfWASp influences the behaviour of neutrophils and macrophages in response to tissue damage and to clearance of infections. We then use this mutant background to study how leukocyte lineage-specific transgenic replacement with human WASp variants (including normal wild type and point mutations that either fail to bind Cdc42 or cannot be phosphorylated, and a constitutively active mutant equivalent to that seen in XLN patients) alter the capacity for generation of neutrophils, their chemotactic response to wounds and the phagocytic clearance capacity of macrophages. This model provides a unique insight into WASp-related immunodeficiency at both a cellular and whole organism level.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: