Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,506 papers

Wine genomics.

  • Roland J Siezen‎
  • Microbial biotechnology‎
  • 2008‎

No abstract available


Wine fermentation microbiome: a landscape from different Portuguese wine appellations.

  • Cátia Pinto‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

Grapes and wine musts harbor a complex microbiome, which plays a crucial role in wine fermentation as it impacts on wine flavour and, consequently, on its final quality and value. Unveiling the microbiome and its dynamics, and understanding the ecological factors that explain such biodiversity, has been a challenge to oenology. In this work, we tackle this using a metagenomics approach to describe the natural microbial communities, both fungal and bacterial microorganisms, associated with spontaneous wine fermentations. For this, the wine microbiome, from six Portuguese wine appellations, was fully characterized as regards to three stages of fermentation - Initial Musts (IM), and Start and End of alcoholic fermentations (SF and EF, respectively). The wine fermentation process revealed a higher impact on fungal populations when compared with bacterial communities, and the fermentation evolution clearly caused a loss of the environmental microorganisms. Furthermore, significant differences (p < 0.05) were found in the fungal populations between IM, SF, and EF, and in the bacterial population between IM and SF. Fungal communities were characterized by either the presence of environmental microorganisms and phytopathogens in the IM, or yeasts associated with alcoholic fermentations in wine must samples as Saccharomyces and non-Saccharomyces yeasts (as Lachancea, Metschnikowia, Hanseniaspora, Hyphopichia, Sporothrix, Candida, and Schizosaccharomyces). Among bacterial communities, the most abundant family was Enterobacteriaceae; though families of species associated with the production of lactic acid (Lactobacillaceae, Leuconostocaceae) and acetic acid (Acetobacteriaceae) were also detected. Interestingly, a biogeographical correlation for both fungal and bacterial communities was identified between wine appellations at IM suggesting that each wine region contains specific and embedded microbial communities which may contribute to the uniqueness of regional wines.


Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors.

  • Rosa Perestrelo‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

In the present study we aimed to investigate the volatile organic compounds (VOCs) that may potentially be responsible for specific descriptors of Madeira wine providing details about Madeira wine aroma notes at molecular level. Moreover, the wine aroma profile, based on the obtained data, will be a starting point to evaluate the impact of grape variety (Malvasia, Bual, Sercial, Verdelho and Tinta Negra), type (sweet, medium sweet, dry and medium dry), and age (from 3 to 20 years old) on Madeira wine sensorial properties. Firstly, a comprehensive and in-depth Madeira wine volatile profiling was carried out using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-qMS). Secondly, a relation among the varietal, fermentative and aging aroma compounds, and their aroma descriptors with the Madeira wine sensorial properties was assessed. A total of 82 VOCs, belonging to different chemical families were identified, namely 21 esters, 13 higher alcohols, ten terpenic compounds, nine fatty acids, seven furanic compounds, seven norisoprenoids, six lactones, four acetals, four volatile phenols and one sulphur compound. From a sensorial point of view, during the aging process the wine lost its freshness and fruitiness odor related to the presence of some varietal and fermentative compounds, whereas other descriptors such as caramel, dried fruits, spicy, toasty and woody, arose during ageing. The Maillard reaction and diffusion from the oak were the most important pathways related with these descriptors. A relationship-based approach was used to explore the impact of grape variety, wine type, and age on Madeira wine sensorial properties based on shared number of VOCs and their odors.


Wine Storage at Cellar vs. Room Conditions: Changes in the Aroma Composition of Riesling Wine.

  • Andrii Tarasov‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Storage temperature is one of the most important factors affecting wine aging. Along with bottling parameters (type of stopper, SO2 level and dissolved O2 in wine), they determine how fast wine will evolve, reach its optimum and decline in sensory quality. At the same time, lowering of the SO2 level in wine has been a hot topic in recent years. In the current work, we investigated how Riesling wine evolved on the molecular level in warm (~25 °C) and cool (~15 °C) conditions depending on the SO2 level in the wine (low, medium and high), flushing of the bottle's headspace with CO2 and three types of stoppers (Diam 30, Diam 30 origin and Diam 5) with different OIR levels (0.8-1.3 mg) and OTR levels (0.3-0.4 mg/year). It was demonstrated that the evolution of primary and secondary aromas, wine color and low molecular weight sulfur compounds (LMWSCs) during the two years of aging mainly depended on the storage temperature. Variation in the SO2 level and CO2 in the headspace affected mostly certain LMWSCs (H2S, MeSH) and β-damascenone. New aspects of C13-norisprenoids and monoterpenoids behavior in Riesling wine with different levels of SO2 and O2 were discussed. All three types of stoppers showed very close wine preservation properties during the two years of storage. The sensory analysis revealed that, after only six months, the warm stored wines with a low SO2 level were more oxidized and different from the samples with medium and high SO2 levels. A similar tendency was also observed for the cool stored samples.


New Labeling Rules for Wine: Wine Alcohol-Derived Calories and Polyphenol Consumption on Health.

  • Antoni Sánchez-Ortiz‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2024‎

Alcohol content, proanthocyanins and anthocyanins influence wine quality. The composition of wine depends on the type of cultivar, location, environmental conditions, and management practices. Phenolic compounds have attracted considerable research interest due to their antioxidant properties and potential beneficial effects on human health. However, the low bioavailability of anthocyanins creates a major bottleneck in their ability to exert beneficial effects. Despite extensive research on the effects of wine on human health, no clear evidence has been obtained on the benefits of wine quality or geographic area of production on health conditions, such as metabolic syndrome. Five climatically and geologically distinct wines were evaluated. Based on recent studies, meta-analyses, and pooled analyses of wine composition, along with the predicted low bioavailability of polyphenol compounds, we estimated the efficacy of five geographically distinct wines according to gastrointestinal absorption and the effects of alcohol intake on both men and women, with a view to ascertaining whether geographical origin influences the antioxidant serum composition of wine. Data on the estimated consumption of wine suggest that the polyphenol contents are similar regardless of choice of wine/area, while different alcohol compositions affect the level of alcohol and calorie intake. Thus, moderate wine drinkers should be advised to control the habit, but without exceeding the dose considered a healthy threshold (up to 30-40 g of alcohol/day in men and 10-20 g of alcohol/day in women), given no medical contraindications are present. These results will add value to the framework of the last reform of the Common Agricultural Policy (CAP) adopted in December 2021, where the European Parliament and the Council introduced new labeling rules for the wine sector and aromatized wine products.


Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics.

  • Nicholas A Bokulich‎ et al.
  • mBio‎
  • 2016‎

Regionally distinct wine characteristics (terroir) are an important aspect of wine production and consumer appreciation. Microbial activity is an integral part of wine production, and grape and wine microbiota present regionally defined patterns associated with vineyard and climatic conditions, but the degree to which these microbial patterns associate with the chemical composition of wine is unclear. Through a longitudinal survey of over 200 commercial wine fermentations, we demonstrate that both grape microbiota and wine metabolite profiles distinguish viticultural area designations and individual vineyards within Napa and Sonoma Counties, California. Associations among wine microbiota and fermentation characteristics suggest new links between microbiota, fermentation performance, and wine properties. The bacterial and fungal consortia of wine fermentations, composed from vineyard and winery sources, correlate with the chemical composition of the finished wines and predict metabolite abundances in finished wines using machine learning models. The use of postharvest microbiota as an early predictor of wine chemical composition is unprecedented and potentially poses a new paradigm for quality control of agricultural products. These findings add further evidence that microbial activity is associated with wine terroir


First Proteomic Approach to Identify Cell Death Biomarkers in Wine Yeasts during Sparkling Wine Production.

  • Juan Antonio Porras-Agüera‎ et al.
  • Microorganisms‎
  • 2019‎

Apoptosis and later autolysis are biological processes which take place in Saccharomyces cerevisiae during industrial fermentation processes, which involve costly and time-consuming aging periods. Therefore, the identification of potential cell death biomarkers can contribute to the creation of a long-term strategy in order to improve and accelerate the winemaking process. Here, we performed a proteomic analysis based on the detection of possible apoptosis and autolysis protein biomarkers in two industrial yeast strains commonly used in post-fermentative processes (sparkling wine secondary fermentation and biological aging) under typical sparkling wine elaboration conditions. Pressure had a negatively effect on viability for flor yeast, whereas the sparkling wine strain seems to be more adapted to these conditions. Flor yeast strain experienced an increase in content of apoptosis-related proteins, glucanases and vacuolar proteases at the first month of aging. Significant correlations between viability and apoptosis proteins were established in both yeast strains. Multivariate analysis based on the proteome of each process allowed to distinguish among samples and strains. The proteomic profile obtained in this study could provide useful information on the selection of wine strains and yeast behavior during sparkling wine elaboration. Additionally, the use of flor yeasts for sparkling wine improvement and elaboration is proposed.


Wine aging: a bottleneck story.

  • Thomas Karbowiak‎ et al.
  • NPJ science of food‎
  • 2019‎

The sporadic oxidation of white wines remains an open question, making wine shelf life a subjective debate. Through a multidisciplinary synoptic approach performed as a remarkable case study on aged bottles of white wine, this work unraveled a yet unexplored route for uncontrolled oxidation. By combining sensory evaluation, chemical and metabolomics analyses of the wine, and investigating oxygen transfer through the bottleneck/stopper, this work elucidates the importance of the glass/cork interface. It shows unambiguously that the transfer of oxygen at the interface between the cork stopper and the glass bottleneck must be considered a potentially significant contributor to oxidation state during the bottle aging, leading to a notable modification of a wine's chemical signature.


The Oxygen Consumption Kinetics of Commercial Oenological Tannins in Model Wine Solution and Chianti Red Wine.

  • Jelena Jeremic‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

One property of oenological tannins, oxygen reactivity, is commonly exploited in winemaking. The reactivity is mediated by the presence of catalysts (i.e., transition metals and sulfur dioxide) and protects wine against oxidation. This work compares the oxygen consumption rate (OCR) of four commercial oenological tannins (two procyanidins from grape skin and seed, an ellagitannin from oak wood and a gallotannin from gallnut) in a model wine solution and Chianti red wine. All samples were subjected to consecutive cycles of air saturation at 20 °C to increase the total level of oxygen provided. After each cycle, the oxygen level was measured by means of a non-invasive luminescent sensor glued to a transparent surface (sensor dots) until there was no further change in substrate reactivity. The OCR followed first-order kinetics, regardless of the tannin. As expected, the ellagitannin showed the fastest OCR, followed by the two from grape seeds and skins and finally the gallotannin. The total O2 consumption in the red wine was almost double that of the model solution, due to the oxidation of wine substrates. The measurement of OCR is helpful for setting up an advanced winemaking protocol that makes use of tannins to reduce the use of sulfur dioxide.


Oral Wine Texture Perception and Its Correlation with Instrumental Texture Features of Wine-Saliva Mixtures.

  • Laura Laguna‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2019‎

Unlike solid food, texture descriptors in liquid food are scarce, and they are frequently reduced to the term viscosity. However, in wines, apart from viscosity, terms, such as astringency, body, unctuosity and density, help describe their texture, relating the complexity and balance among their chemical components. Yet there is uncertainty about which wine components (and their combinations) cause each texture sensation and if their instrumental assessment is possible. Therefore, the aim of the present work was to study the effect of wine texture on its main components, when interacting with saliva. This was completed by using instrumental measurements of density and viscosity, and by using two types of panels (trained and expert). For that, six different model-wine formulations were prepared by adding one or multiple wine components: ethanol, mannoproteins, glycerol, and tannins to a de-alcoholised wine. All formulations were mixed with fresh human saliva (1:1), and their density and rheological properties were measured. Although there were no statistical differences, body perception was higher for samples with glycerol and/or mannoproteins, this was also correlated with density instrumental measurements (R = 0.971, p = 0.029). The viscosity of samples with tannins was the highest due to the formation of complexes between the model-wine and salivary proteins. This also provided astringency, therefore correlating viscosity and astringency feelings (R = 0.855, p = 0.030). No correlation was found between viscosity and body perception because of the overlapping of the phenolic components. Overall, the present results reveal saliva as a key factor when studying the wine texture through instrumental measurements (density and viscosity).


Unraveling the Enzymatic Basis of Wine "Flavorome": A Phylo-Functional Study of Wine Related Yeast Species.

  • Ignacio Belda‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Non-Saccharomyces yeasts are a heterogeneous microbial group involved in the early stages of wine fermentation. The high enzymatic potential of these yeasts makes them a useful tool for increasing the final organoleptic characteristics of wines in spite of their low fermentative power. Their physiology and contribution to wine quality are still poorly understood, with most current knowledge being acquired empirically and in most cases based in single species and strains. This work analyzed the metabolic potential of 770 yeast isolates from different enological origins and representing 15 different species, by studying their production of enzymes of enological interest and linking phylogenetic and enzymatic data. The isolates were screened for glycosidase enzymes related to terpene aroma release, the β-lyase activity responsible for the release of volatile thiols, and sulfite reductase. Apart from these aroma-related activities, protease, polygalacturonase and cellulase activities were also studied in the entire yeast collection, being related to the improvement of different technological and sensorial features of wines. In this context, and in terms of abundance, two different groups were established, with α-L-arabinofuranosidase, polygalacturonase and cellulase being the less abundant activities. By contrast, β-glucosidase and protease activities were widespread in the yeast collection studied. A classical phylogenetic study involving the partial sequencing of 26S rDNA was conducted in conjunction with the enzymatic profiles of the 770 yeast isolates for further typing, complementing the phylogenetic relationships established by using 26S rDNA. This has rendered it possible to foresee the contribution different yeast species make to wine quality and their potential applicability as pure inocula, establishing species-specific behavior. These consistent results allowed us to design future targeted studies on the impact different non-Saccharomyces yeast species have on wine quality, understanding intra and interspecific enzymatic odds and, therefore, aiming to predict the most suitable application for the current non-Saccharomyces strains, as well as the potential future applications of new strains. This work therefore contributes to a better understanding of the concept of wine microbiome and its potential consequences for wine quality, as well as to the knowledge of non-Saccharomyces yeasts for their use in the wine industry.


The impact of SO2 on wine flavanols and indoles in relation to wine style and age.

  • Panagiotis Arapitsas‎ et al.
  • Scientific reports‎
  • 2018‎

Wine has one of the broadest chemical profiles, and the common oenological practice of adding the antioxidant and antimicrobial sulfur dioxide has a major impact on its metabolomic fingerprint. In this study, we investigated novel discovered oenological reactions primarily occurring between wine metabolites and sulfur dioxide. The sulfonated derivatives of epicatechin, procyanidin B2, indole acetic acid, indole lactic acid and tryptophol were synthesized and for the first time quantified in wine. Analysis of 32 metabolites in 195 commercial wines (1986-2016 vintages) suggested that sulfonation of tryptophan metabolites characterised white wines, in contrast to red wines, where sulfonation of flavanols was preferred. The chemical profile of the oldest wines was strongly characterised by sulfonated flavanols and indoles, indicating that could be fundamental metabolites in explaining quality in both red and white aged wines. These findings offer new prospects for more precise use of sulfur dioxide in winemaking.


Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation.

  • Lucie Crépin‎ et al.
  • Microbial cell factories‎
  • 2014‎

Under N-limiting conditions, Saccharomyces cerevisiae strains display a substantial variability in their biomass yield from consumed nitrogen -in particular wine yeasts exhibit high growth abilities- that is correlated with their capacity to complete alcoholic fermentation, a trait of interest for fermented beverages industries. The aim of the present work was to assess the contribution of nitrogen availability to the strain-specific differences in the ability to efficiently use N-resource for growth and to identify the underlying mechanisms. We compared the profiles of assimilation of several nitrogen sources (mostly ammonium, glutamine, and arginine) for high and low biomass-producing strains in various conditions of nitrogen availability. We also analyzed the intracellular fate of nitrogen compounds.


Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition.

  • Javier Alonso-Del-Real‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation performance improvements and the final wines contained less ethanol and higher amounts of glycerol. Finally, it is interesting to note that in co-inoculated fermentations, wine strains of S. cerevisiae and S. uvarum performed better than non-wine strains of the same species.


Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

  • Jennifer R Bellon‎ et al.
  • PloS one‎
  • 2013‎

Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.


DCMC as a Promising Alternative to Bentonite in White Wine Stabilization. Impact on Protein Stability and Wine Aromatic Fraction.

  • Francesco Saracino‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Protein haze in white wine is one of the most common non-microbial defects of commercial wines, with bentonite being the main solution utilized by the winemaking industry to tackle this problem. Bentonite presents some serious disadvantages, and several alternatives have been proposed. Here, an alternative based on a new cellulose derivative (dicarboxymethyl cellulose, DCMC) is proposed. To determine the efficiency of DCMC as a bentonite alternative, three monovarietal wines were characterized, and their protein instability and content determined by a heat stability test (HST) and the Bradford method, respectively. The wines were treated with DCMC to achieve stable wines, as shown by the HST, and the efficacy of the treatments was assessed by determining, before and after treatment, the wine content in protein, phenolic compounds, sodium, calcium, and volatile organic compounds (VOCs) as well as the wine pH. DCMC applied at dosages such as those commonly employed for bentonite was able to reduce the protein content in all tested wines and to stabilize all but the Moscatel de Setúbal varietal wine. In general, DCMC was shown to induce lower changes in the wine pH and phenolic content than bentonite, reducing the wine calcium content. Regarding which VOCs are concerned, DCMC produced a general impact similar to that of bentonite, with differences depending on wine variety. The results obtained suggest that DCMC can be a sustainable alternative to bentonite in protein white wine stabilization.


Rose Wine Market: Anything but Colour?

  • Stephanie Peres‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2020‎

In many countries, the consumption of still wine is in strong decline. The market for rose wine, however, stands in stark contrast to this trend, seeing worldwide growth of almost 30% over the last 15 years. For most observers/experts, product colour plays an important role in this paradigm shift. For this reason, companies' marketing efforts often focus on this purely visual characteristic. There is, however, no certainty that other emerging consumer demands, related to environmental concerns or how "natural" a wine is (organic wines, natural wines, etc.), do not also play a role in the enthusiasm seen in new wine consumers. This article proposes an assessment of expectations related to colour and the decisions made by rose wine consumers, using two complementary experiments carried out in France. The first experiment is based on an online survey studying only consumers' colour preferences. We will show that, contrary to popular belief, there is no consensus on this criterion, although regional trends can be identified. Typically, the "salmon" shade, which is generally the leader on the global market-and characteristic of Provence wines-does not win unanimous support across all regions. In contrast, an "apricot" shade seems to be preferred by consumers in the Bordeaux region. The second experiment confirms this result within the framework of an experimental market revealing consumers' willingness to pay (WTP). This market also offers consumers the opportunity to taste wines and provides information on organic certification and "naturalness" (symbolised by the absence of added sulphites). We will then demonstrate how the latter criteria, although often popular, play only a small role-compared with colour-in consumer decisions. We will conclude this article with observations on the atypical nature of the rose wine market and on possible avenues for further research related to the emotional role colour plays in wine tasting and its possible specificity in the world of food and drink products.


Investigating Australian Consumers' Perceptions of and Preferences for Different Styles of Sparkling Wine Using the Fine Wine Instrument.

  • Naomi Verdonk‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

This study investigated consumer preferences for different styles of sparkling wine and the influence of wine style and occasion on sparkling wine purchasing and consumption behavior. Australian consumers (n = 203) completed an online survey and blind tasting of representative styles of commercial sparkling wines, including Champagne. Wine sensory profiles were determined by descriptive analysis using a trained panel (n = 12) and consumers were segmented into 'No Frills', 'Aspirant' and 'Enthusiast' clusters using the Fine Wine Instrument. Consumer perceptions, preferences and liking were measured using 9-point hedonic scales and compared via statistical analysis. Consumers anticipated liking Champagne and sparkling white wine the most, and Moscato and Prosecco the least, but on tasting, could only readily identify the Moscato and sparkling red wines, as the most contrasting wine styles. As such, liking scores for the Champagne and sparkling white wine were significantly lower based on tasting (median scores were 6.0, compared with 9.0 and 8.0 for survey responses, respectively). Consumers' preconceived expectations of different sparkling wine styles clearly influenced purchasing and consumption behavior. Aspirants and Enthusiasts were more likely to spend more per bottle for Champagne and sparkling white wine, and consumption of these sparkling wines was most frequently associated with celebratory occasions, such as anniversaries, birthdays, Christmas, New Year and weddings.


Specificity of Saliva Esterases by Wine Carboxylic Esters and Inhibition by Wine Phenolic Compounds Under Simulated Oral Conditions.

  • María Pérez-Jiménez‎ et al.
  • Frontiers in nutrition‎
  • 2021‎

The specificity of human esterase activity (EA) from the stimulated (SS) and non-stimulated (NSS) saliva toward different typical wine odorant carboxylic esters and its inhibition by the wine phenolic compounds has been evaluated. For the specificity, six p-nitrophenyl linked esters with different carbon chain lengths (from 2 to 12 carbons) were employed. The five single phenolic compounds (catechin, quercetin, kaempferol, myricetin, and resveratrol) at typical wine concentrations were assayed in the salivary EA inhibition study. Additionally, the inhibition exerted by the mixtures of wine polyphenols was evaluated using four commercial phenolic extracts [a grape seed extract (GSE), the monomers and oligomer fraction of the GSE, and a red wine extract (RWE)]. Finally, the saliva EA under the wine consumption conditions (pH = 5 and 11.3% ethanol) was evaluated. The results showed a higher EA in SS than NSS. It was also shown that the EA was higher toward the smaller than bigger esters regardless of the saliva types (SS or NSS). However, the inhibition exerted on saliva EA by the individual and mixtures of phenolic compounds was proven. Catechin was the phenolic compound that mostly inhibited saliva EA, while resveratrol showed the lowest EA inhibition. This inhibition was mainly related to the concentration of the phenolic compounds, but also with its structure. Finally, under simulated wine consumption, a decrease in EA was produced, which was mainly provoked by the decrease in the salivary pH. Nonetheless, since salivary pH recovers a few seconds after wine consumption, saliva EA might be relevant for the long-lasting perception of wine esters.


Genetic Variants Associated with Port-Wine Stains.

  • Alice Frigerio‎ et al.
  • PloS one‎
  • 2015‎

Port-wine stains (PWS) are capillary malformations, typically located in the dermis of the head and neck, affecting 0.3% of the population. Current theories suggest that port-wine stains are caused by somatic mutations that disrupt vascular development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: