Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,403 papers

West Nile Virus in Brazil.

  • Érica Azevedo Costa‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Background: West Nile virus (WNV) was first sequenced in Brazil in 2019, when it was isolated from a horse in the Espírito Santo state. Despite multiple studies reporting serological evidence suggestive of past circulation since 2004, WNV remains a low priority for surveillance and public health, such that much is still unknown about its genomic diversity, evolution, and transmission in the country. Methods: A combination of diagnostic assays, nanopore sequencing, phylogenetic inference, and epidemiological modeling are here used to provide a holistic overview of what is known about WNV in Brazil. Results: We report new genetic evidence of WNV circulation in southern (Minas Gerais, São Paulo) and northeastern (Piauí) states isolated from equine red blood cells. A novel, climate-informed theoretical perspective of the potential transmission of WNV across the country highlights the state of Piauí as particularly relevant for WNV epidemiology in Brazil, although it does not reject possible circulation in other states. Conclusion: Our output demonstrates the scarceness of existing data, and that although there is sufficient evidence for the circulation and persistence of the virus, much is still unknown on its local evolution, epidemiology, and activity. We advocate for a shift to active surveillance, to ensure adequate preparedness for future epidemics with spill-over potential to humans.


West Nile virus in California.

  • William Reisen‎ et al.
  • Emerging infectious diseases‎
  • 2004‎

West Nile virus (WNV) was first isolated in California during July 2003 from a pool of Culex tarsalis collected near El Centro, Imperial County. WNV transmission then increased and spread in Imperial and Coachella Valleys, where it was tracked by isolation from pools of Cx. tarsalis, seroconversions in sentinel chickens, and seroprevalence in free-ranging birds. WNV then dispersed to the city of Riverside, Riverside County, and to the Whittier Dam area of Los Angeles County, where it was detected in dead birds and pools of Cx. pipiens quinquefasciatus. By October, WNV was detected in dead birds collected from riparian corridors in Los Angeles, west to Long Beach, and through inland valleys south from Riverside to San Diego County. WNV was reported concurrently from Arizona in mid-August and from Baja, Mexico, in mid-November. Possible mechanisms for virus introduction, amplification, and dispersal are discussed.


West Nile Virus in Slovenia.

  • Nataša Knap‎ et al.
  • Viruses‎
  • 2020‎

West Nile virus (WNV) is a flavivirus transmitted by mosquitoes. Birds are the reservoir for the virus; humans, horses and other mammals are dead-end hosts. Infections caused by WNV in humans can vary from asymptomatic infections to West Nile fever (WNF) or West Nile neuroinvasive disease (WNND). In 1995, a serosurvey was performed in Slovenia on forest workers, and WNV specific IgG antibodies were confirmed in 6.8% of the screened samples, indicating that WNV is circulating in Slovenia. No human disease cases were detected in Slovenia until 2013, when the first case of WNV infection was confirmed in a retrospective study in a 79-year old man with meningitis. In 2018, three patients with WNND were confirmed by laboratory tests, with detection of IgM antibodies in the cerebrospinal fluid of the patients. In one of the patients, WNV RNA was detected in the urine sample. In 2017, 2018 and 2019, a mosquito study was performed in Slovenia. Mosquitoes were sampled on 14 control locations and 35 additional locations in 2019. No WNV was detected in mosquitoes in 2017 and 2019, but we confirmed the virus in a pool of Culex sp. mosquitoes in 2018. The virus was successfully isolated, and complete genome sequence was acquired. The whole genome of the WNV was also sequenced from the patient's urine sample. The whole genome sequences of the WNV virus detected in Slovenian patient and mosquito indicate the virus most likely spread from the north, because of the geographic proximity and because the sequences cluster with the Austrian and Hungarian sequences. A sentinel study was performed on dog sera samples, and we were able to confirm IgG antibodies in 1.8% and 4.3% of the samples in 2017 and 2018, respectively. Though Slovenia is not a highly endemic country for WNV, we have established that the virus circulates in Slovenia.


West Nile virus in farmed alligators.

  • Debra L Miller‎ et al.
  • Emerging infectious diseases‎
  • 2003‎

Seven alligators were submitted to the Tifton Veterinary Diagnostic and Investigational Laboratory for necropsy during two epizootics in the fall of 2001 and 2002. The alligators were raised in temperature-controlled buildings and fed a diet of horsemeat supplemented with vitamins and minerals. Histologic findings in the juvenile alligators were multiorgan necrosis, heterophilic granulomas, and heterophilic perivasculitis and were most indicative of septicemia or bacteremia. Histologic findings in a hatchling alligator were random foci of necrosis in multiple organs and mononuclear perivascular encephalitis, indicative of a viral cause. West Nile virus was isolated from submissions in 2002. Reverse transcription-polymerase chain reaction (RT-PCR) results on all submitted case samples were positive for West Nile virus for one of four cases associated with the 2001 epizootic and three of three cases associated with the 2002 epizootic. RT-PCR analysis was positive for West Nile virus in the horsemeat collected during the 2002 outbreak but negative in the horsemeat collected after the outbreak.


Alligators as West Nile virus amplifiers.

  • Kaci Klenk‎ et al.
  • Emerging infectious diseases‎
  • 2004‎

Recent evidence suggests that American alligators (Alligator mississippiensis) may be capable of transmitting West Nile virus (WNV) to other alligators. We experimentally exposed 24 juvenile alligators to WNV parenterally or orally. All became infected, and all but three sustained viremia titers >5.0 log10 PFU/mL (a threshold considered infectious for Culex quinquefasciatus mosquitoes) for 1 to 8 days. Noninoculated tankmates also became infected. The viremia profiles and multiple routes of infection suggest alligators may play an important role in WNV transmission in areas with high population densities of juvenile alligators.


West Nile virus infection in crocodiles.

  • Amir Steinman‎ et al.
  • Emerging infectious diseases‎
  • 2003‎

No abstract available


Serologic evidence of West Nile virus transmission, Jamaica, West Indies.

  • Alan P Dupuis‎ et al.
  • Emerging infectious diseases‎
  • 2003‎

In spring 2002, an intensive avian serosurvey was initiated in Jamaica, Puerto Rico, and Mexico. We collected >1,600 specimens from resident and nonresident neotropical migratory birds before their northerly migrations. Plaque reduction neutralization test results indicated specific neutralizing antibodies to West Nile virus in 11 resident species from Jamaica.


Neuromuscular manifestations of west nile virus infection.

  • A Arturo Leis‎ et al.
  • Frontiers in neurology‎
  • 2012‎

The most common neuromuscular manifestation of West Nile virus (WNV) infection is a poliomyelitis syndrome with asymmetric paralysis variably involving one (monoparesis) to four limbs (quadriparesis), with or without brainstem involvement and respiratory failure. This syndrome of acute flaccid paralysis may occur without overt fever or meningoencephalitis. Although involvement of anterior horn cells in the spinal cord and motor neurons in the brainstem are the major sites of pathology responsible for neuromuscular signs, inflammation also may involve skeletal or cardiac muscle (myositis, myocarditis), motor axons (polyradiculitis), and peripheral nerves [Guillain-Barré syndrome (GBS), brachial plexopathy]. In addition, involvement of spinal sympathetic neurons and ganglia provides an explanation for autonomic instability seen in some patients. Many patients also experience prolonged subjective generalized weakness and disabling fatigue. Despite recent evidence that WNV may persist long-term in the central nervous system or periphery in animals, the evidence in humans is controversial. WNV persistence would be of great concern in immunosuppressed patients or in those with prolonged or recurrent symptoms. Support for the contention that WNV can lead to autoimmune disease arises from reports of patients presenting with various neuromuscular diseases that presumably involve autoimmune mechanisms (GBS, other demyelinating neuropathies, myasthenia gravis, brachial plexopathies, stiff-person syndrome, and delayed or recurrent symptoms). Although there is no specific treatment or vaccine currently approved in humans, and the standard remains supportive care, drugs that can alter the cascade of immunobiochemical events leading to neuronal death may be potentially useful (high-dose corticosteroids, interferon preparations, and intravenous immune globulin containing WNV-specific antibodies). Human experience with these agents seems promising based on anecdotal reports.


West Nile virus infection of birds, Mexico.

  • Sergio Guerrero-Sánchez‎ et al.
  • Emerging infectious diseases‎
  • 2011‎

West Nile virus (WNV) has caused disease in humans, equids, and birds at lower frequency in Mexico than in the United States. We hypothesized that the seemingly reduced virulence in Mexico was caused by attenuation of the Tabasco strain from southeastern Mexico, resulting in lower viremia than that caused by the Tecate strain from the more northern location of Baja California. During 2006-2008, we tested this hypothesis in candidate avian amplifying hosts: domestic chickens, rock pigeons, house sparrows, great-tailed grackles, and clay-colored thrushes. Only great-tailed grackles and house sparrows were competent amplifying hosts for both strains, and deaths occurred in each species. Tecate strain viremia levels were higher for thrushes. Both strains produced low-level viremia in pigeons and chickens. Our results suggest that certain avian hosts within Mexico are competent for efficient amplification of both northern and southern WNV strains and that both strains likely contribute to bird deaths.


West Nile virus transmission potential in Portugal.

  • José Lourenço‎ et al.
  • Communications biology‎
  • 2022‎

It is unclear whether West Nile virus (WNV) circulates endemically in Portugal. Despite the country's adequate climate for transmission, Portugal has only reported four human WNV infections so far. We performed a review of WNV-related data (1966-2020), explored mosquito (2016-2019) and land type distributions (1992-2019), and used climate data (1981-2019) to estimate WNV transmission suitability in Portugal. Serological and molecular evidence of WNV circulation from animals and vectors was largely restricted to the south. Land type and climate-driven transmission suitability distributions, but not the distribution of WNV-capable vectors, were compatible with the North-South divide present in serological and molecular evidence of WNV circulation. Our study offers a comprehensive, data-informed perspective and review on the past epidemiology, surveillance and climate-driven transmission suitability of WNV in Portugal, highlighting the south as a subregion of importance. Given the recent WNV outbreaks across Europe, our results support a timely change towards local, active surveillance.


A recombinant influenza A virus expressing domain III of West Nile virus induces protective immune responses against influenza and West Nile virus.

  • Byron E E Martina‎ et al.
  • PloS one‎
  • 2011‎

West Nile virus (WNV) continues to circulate in the USA and forms a threat to the rest of the Western hemisphere. Since methods for the treatment of WNV infections are not available, there is a need for the development of safe and effective vaccines. Here, we describe the construction of a recombinant influenza virus expressing domain III of the WNV glycoprotein E (Flu-NA-DIII) and its evaluation as a WNV vaccine candidate in a mouse model. FLU-NA-DIII-vaccinated mice were protected from severe body weight loss and mortality caused by WNV infection, whereas control mice succumbed to the infection. In addition, it was shown that one subcutaneous immunization with 10(5) TCID(50) Flu-NA-DIII provided 100% protection against challenge. Adoptive transfer experiments demonstrated that protection was mediated by antibodies and CD4+T cells. Furthermore, mice vaccinated with FLU-NA-DIII developed protective influenza virus-specific antibody titers. It was concluded that this vector system might be an attractive platform for the development of bivalent WNV-influenza vaccines.


Biological and phylogenetic characteristics of West African lineages of West Nile virus.

  • Gamou Fall‎ et al.
  • PLoS neglected tropical diseases‎
  • 2017‎

The West Nile virus (WNV), isolated in 1937, is an arbovirus (arthropod-borne virus) that infects thousands of people each year. Despite its burden on global health, little is known about the virus' biological and evolutionary dynamics. As several lineages are endemic in West Africa, we obtained the complete polyprotein sequence from three isolates from the early 1990s, each representing a different lineage. We then investigated differences in growth behavior and pathogenicity for four distinct West African lineages in arthropod (Ap61) and primate (Vero) cell lines, and in mice. We found that genetic differences, as well as viral-host interactions, could play a role in the biological properties in different WNV isolates in vitro, such as: (i) genome replication, (ii) protein translation, (iii) particle release, and (iv) virulence. Our findings demonstrate the endemic diversity of West African WNV strains and support future investigations into (i) the nature of WNV emergence, (ii) neurological tropism, and (iii) host adaptation.


Alexander the Great and West Nile virus encephalitis.

  • John S Marr‎ et al.
  • Emerging infectious diseases‎
  • 2003‎

Alexander the Great died in Babylon in 323 BC. His death at age 32 followed a 2-week febrile illness. Speculated causes of death have included poisoning; assassination, and a number of infectious diseases. One incident, mentioned by Plutarch but not considered by previous investigators, may shed light on the cause of Alexander's death. The incident, which occurred as he entered Babylon, involved a flock of ravens exhibiting unusual behavior and subsequently dying at his feet. The inexplicable behavior of ravens is reminiscent of avian illness and death weeks before the first human cases of West Nile virus infection were identified in the United States. We posit that Alexander may have died of West Nile virus encephalitis.


West Nile Virus in Farmed Crocodiles, Zambia, 2019.

  • Edgar Simulundu‎ et al.
  • Emerging infectious diseases‎
  • 2020‎

We detected West Nile virus (WNV) nucleic acid in crocodiles (Crocodylus niloticus) in Zambia. Phylogenetically, the virus belonged to lineage 1a, which is predominant in the Northern Hemisphere. These data provide evidence that WNV is circulating in crocodiles in Africa and increases the risk for animal and human transmission.


West Nile virus in golden eagles, Spain, 2007.

  • Miguel Angel Jiménez-Clavero‎ et al.
  • Emerging infectious diseases‎
  • 2008‎

No abstract available


Experimental infection of horses with West Nile virus.

  • Michel L Bunning‎ et al.
  • Emerging infectious diseases‎
  • 2002‎

A total of 12 horses of different breeds and ages were infected with West Nile virus (WNV) via the bites of infected Aedes albopictus mosquitoes. Half the horses were infected with a viral isolate from the brain of a horse (BC787), and half were infected with an isolate from crow brain (NY99-6625); both were NY99 isolates. Postinfection, uninfected female Ae. albopictus fed on eight of the infected horses. In the first trial, Nt antibody titers reached >1:320, 1:20, 1:160, and 1:80 for horses 1 to 4, respectively. In the second trial, the seven horses with subclinical infections developed Nt antibody titers >1:10 between days 7 and 11 post infection. The highest viremia level in horses fed upon by the recipient mosquitoes was approximately 460 Vero cell PFU/mL. All mosquitoes that fed upon viremic horses were negative for the virus. Horses infected with the NY99 strain of WNV develop low viremia levels of short duration; therefore, infected horses are unlikely to serve as important amplifying hosts for WNV in nature.


Feeding patterns of potential West Nile virus vectors in south-west Spain.

  • Joaquín Muñoz‎ et al.
  • PloS one‎
  • 2012‎

Mosquito feeding behaviour determines the degree of vector-host contact and may have a serious impact on the risk of West Nile virus (WNV) epidemics. Feeding behaviour also interacts with other biotic and abiotic factors that affect virus amplification and transmission.


West Nile virus illness in Ontario, Canada: 2017.

  • S Wijayasri‎ et al.
  • Canada communicable disease report = Releve des maladies transmissibles au Canada‎
  • 2019‎

In Canada, the annual incidence rates of West Nile virus (WNV) illness have fluctuated over the last 15 years. Ontario is one of the provinces in Canada most affected by WNV and, as a result, has implemented robust mosquito and human surveillance programs.


Evidence of West Nile virus infection in Nepal.

  • Wiriya Rutvisuttinunt‎ et al.
  • BMC infectious diseases‎
  • 2014‎

Acute febrile illness is common among those seeking medical care and is frequently treated empirically with the underlying illness remaining undiagnosed in resource-poor countries. A febrile illness study was conducted 2009-2010 to identify known and unknown pathogens circulating in Nepal.


Genetically delivered antibody protects against West Nile virus.

  • Alexander Pereboev‎ et al.
  • Antiviral research‎
  • 2008‎

Gene-based delivery of recombinant antibody genes is a promising therapeutic strategy offering numerous advantages including sustained antibody levels, better safety profile and lower production cost. Here we describe generation of a recombinant antibody Fc-9E2 comprising a fusion protein between human Fc of IgG1 and a single-chain Fv derived from a hybridoma 9E2 secreting a mAb neutralizing West Nile virus (WNV). Fc-9E2 was shown to retain parental mAb's specificity and WNV-neutralizing capacity. Adenovirus-mediated in vivo delivery of the antibody gene resulted in sustained Fc-9E2 serum levels leading to abrogation of lethal WNV infection in an animal model.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: