Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Dex modulates the balance of water-electrolyte metabolism by depressing the expression of AVP in PVN.

  • Wenzhi Yang‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Dexmedetomidine (Dex) is a highly selective α2 adrenergic agonist used in clinical anesthesia. Studies have shown that Dex can act on the collecting duct and reduce the body's water reabsorption, thereby increasing water discharge. However, the specific mechanism of Dex on water homeostasis remains unclear. The hypothalamus is the regulatory center of water and salt balance and secretes related neurochemical hormones, such as arginine vasopressin (AVP), to regulate the discharge of water and salt. The paraventricular nucleus (PVN) and supraoptic nucleus (SON) in the hypothalamus are also considered to be the key targets of the thirst loop. They are responsible for the secretion of AVP. The suprachiasmatic nucleus (SCN) is also one of the brain regions where AVP neurons are densely distributed in the hypothalamus. This study used C57BL/6J mice for behavior, immunofluorescence, and blood analysis experiments. Our results showed that Dex could not only depress the expression of AVP in the PVN but also reduce serum AVP concentration. The animal water intake was decreased without impairing the difference in food consumption and the urine excretion was enhanced after the intraperitoneal injection of Dex, while AVP supplementation restored the water intake and inhibited the urine excretion of mice in the Dex group. In addition, the renin-angiotensin-aldosterone system is vital to maintaining serum sodium concentration and extracellular volume. We found that serum sodium, serum chloride, serum aldosterone (ALD) concentration, and plasma osmolality were decreased in the Dex group, which inhibited water reabsorption, and the plasma osmolarity of mice in the Dex group supplemented with AVP was significantly higher than that in Dex group. We also found that Dex significantly increased the concentration of blood urea nitrogen and decreased the concentration of creatinine within the normal range of clinical indicators, indicating that there was no substantive lesion in the renal parenchyma. These results showed that Dex could modulate the balance of water-electrolyte metabolism by depressing the expression of AVP in PVN without impairing renal function.


Does the Minerals Content and Osmolarity of the Fluids Taken during Exercise by Female Field Hockey Players Influence on the Indicators of Water-Electrolyte and Acid-Basic Balance?

  • Joanna Kamińska‎ et al.
  • Nutrients‎
  • 2021‎

Although it is recognized that dehydration and acidification of the body may reduce the exercise capacity, it remains unclear whether the qualitative and quantitative shares of certain ions in the drinks used by players during the same exertion may affect the indicators of their water-electrolyte and acid-base balance. This question was the main purpose of the publication. The research was carried out on female field hockey players (n = 14) throughout three specialized training sessions, during which the players received randomly assigned fluids of different osmolarity and minerals contents. The water-electrolyte and acid-base balance of the players was assessed on the basis of biochemical blood and urine indicators immediately before and after each training session. There were statistically significant differences in the values of all examined indicators for changes before and after exercise, while the differences between the consumed drinks with different osmolarities were found for plasma osmolality, and concentrations of sodium and potassium ions and aldosterone. Therefore, it can be assumed that the degree of mineralization of the consumed water did not have a very significant impact on the indicators of water-electrolyte and acid-base balance in blood and urine.


Effect of Simulated Matches on Post-Exercise Biochemical Parameters in Women's Indoor and Beach Handball.

  • Joanna Kamińska‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

This study assesses the status of hydration and the acid-base balance in female handball players in the Polish Second League before and after simulated matches in both indoor (hall) and beach (outdoor) conditions. The values of biochemical indicators useful for describing water-electrolyte management, such as osmolality, hematocrit, aldosterone, sodium, potassium, calcium, chloride and magnesium, were determined in the players' fingertip capillary blood. Furthermore, the blood parameters of the acid-base balance were analysed, including pH, standard base excess, lactate and bicarbonate ion concentration. Additionally, the pH and specific gravity of the players' urine were determined. The level of significance was set at p < 0.05. It was found that both indoor and beach simulated matches caused post-exercise changes in the biochemical profiles of the players' blood and urine in terms of water-electrolyte and acid-base balance. Interestingly, the location of a simulated match (indoors vs. beach) had a statistically significant effect on only two of the parameters measured post-exercise: concentration of calcium ions (lower indoors) and urine pH (lower on the beach). A single simulated game, regardless of its location, directly affected the acid-base balance and, to a smaller extent, the water-electrolyte balance, depending mostly on the time spent physically active during the match.


Nebulised 3% hypertonic saline versus 0.9% saline for treating patients hospitalised with acute bronchiolitis: protocol for a randomised, double-blind, multicentre trial.

  • Sara Szupieńko‎ et al.
  • BMJ open‎
  • 2023‎

Bronchiolitis is an acute viral infection of the lower respiratory tract. It is most commonly caused by respiratory syncytial virus. Being a common reason for hospitalisation, it affects 13-17% of all hospitalised children younger than 2 years. Only supportive therapy, including suctioning nasal secretions, water-electrolyte balance maintenance and oxygen supplementation when needed, is recommended. However, non-evidence-based diagnostic and therapeutic approaches, including the use of inhaled bronchodilators, nebulised epinephrine, and nebulised and systemic steroids, are common. The inhalation of 3% hypertonic saline is not recommended in bronchiolitis management. However, a recently published meta-analysis revealed that the inhalation of hypertonic saline can reduce the risk of hospitalisation for outpatients with bronchiolitis, while resulting in a shorter length of hospital stay and reduced severity of respiratory distress for inpatients, although the evidence is of low certainty. We aim to assess the efficacy of nebulised hypertonic saline for the treatment of children hospitalised with bronchiolitis.


Kif21a deficiency leads to impaired glomerular filtration barrier function.

  • Hanna Riedmann‎ et al.
  • Scientific reports‎
  • 2023‎

The renal glomerulus represents the major filtration body of the vertebrate nephron and is responsible for urine production and a number of other functions such as metabolic waste elimination and the regulation of water, electrolyte and acid-base balance. Podocytes are highly specialized epithelial cells that form a crucial part of the glomerular filtration barrier (GFB) by establishing a slit diaphragm for semipermeable plasma ultrafiltration. Defects of the GFB lead to proteinuria and impaired kidney function often resulting in end-stage renal failure. Although significant knowledge has been acquired in recent years, many aspects in podocyte biology are still incompletely understood. By using zebrafish as a vertebrate in vivo model, we report a novel role of the Kinesin-like motor protein Kif21a in glomerular filtration. Our studies demonstrate specific Kif21a localization to the podocytes. Its deficiency resulted in altered podocyte morphology leading to podocyte foot process effacement and altered slit diaphragm formation. Finally, we proved considerable functional consequences of Kif21a deficiency by demonstrating a leaky GFB resulting in severe proteinuria. Conclusively, our data identified a novel role of Kif21a for proper GFB function and adds another piece to the understanding of podocyte architecture and regulation.


Cellular orientation of atrial natriuretic peptide in the human brain.

  • D M Raidoo‎ et al.
  • Journal of chemical neuroanatomy‎
  • 1998‎

Many peptide hormones and neurotransmitters have been detected in human neuronal tissue. The localisation of atrial natriuretic peptide (ANP) in the human brain was considered to be both interesting and relevant to the understanding of neurochemistry and brain water-electrolyte homeostasis. This vasoactive peptide hormone has been localised in rat and frog neuronal tissue. In the present study, we report the immunohistochemical localisation of ANP in autopsy samples of human brain tissue employing the avidin-biotin-peroxidase complex technique, using an antibody against a 28 amino acid fragment of human ANP. The most intense staining of immunoreactive ANP was detected in the neurones of preoptic, supraoptic and paraventricular nuclei of the hypothalamus, epithelial cells of the choroid plexus and ventricular ependymal lining cells. Immunoreactive neurones were also observed in the median eminence, lamina terminalis, infundibular and ventromedial nuclei of the hypothalamus, and in neurones of the brain stem, thalamic neurones and some neurones of the caudate nucleus. The network of ANP cells in numerous hypothalamic centres may regulate the salt and water balance in the body through a hypothalamic neuro-endocrine control system. ANP in the brain may also modulate cerebral fluid homeostasis by autocrine and paracrine mechanisms.


Unveiling the power of microenvironment in liver regeneration: an in-depth overview.

  • Yuelei Hu‎ et al.
  • Frontiers in genetics‎
  • 2023‎

The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.


Elf5 is a principal cell lineage specific transcription factor in the kidney that contributes to Aqp2 and Avpr2 gene expression.

  • Justin Grassmeyer‎ et al.
  • Developmental biology‎
  • 2017‎

The mammalian kidney collecting ducts are critical for water, electrolyte and acid-base homeostasis and develop as a branched network of tubular structures composed of principal cells intermingled with intercalated cells. The intermingled nature of the different collecting duct cell types has made it challenging to identify unique and critical factors that mark and/or regulate the development of the different collecting duct cell lineages. Here we report that the canonical Notch signaling pathway components, RBPJ and Presinilin1 and 2, are involved in patterning the mouse collecting duct cell fates by maintaining a balance between principal cell and intercalated cell fates. The relatively reduced number of principal cells in Notch-signaling-deficient kidneys offered a unique genetic leverage to identify critical principal cell-enriched factors by transcriptional profiling. Elf5, which codes for an ETS transcription factor, is one such gene that is down-regulated in kidneys with Notch-signaling-deficient collecting ducts. Additionally, Elf5 is among the earliest genes up regulated by ectopic expression of activated Notch1 in the developing collecting ducts. In the kidney, Elf5 is first expressed early within developing collecting ducts and remains on in mature principal cells. Lineage tracing of Elf5-expressing cells revealed that they are committed to the principal cell lineage by as early as E16.5. Over-expression of ETS Class IIa transcription factors, including Elf5, Elf3 and Ehf, increase the transcriptional activity of the proximal promoters of Aqp2 and Avpr2 in cultured ureteric duct cell lines. Conditional inactivation of Elf5 in the developing collecting ducts results in a small but significant reduction in the expression levels of Aqp2 and Avpr2 genes. We have identified Elf5 as an early maker of the principal cell lineage that contributes to the expression of principal cell specific genes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: