Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,513 papers

A critical phenylalanine residue in the respiratory syncytial virus fusion protein cytoplasmic tail mediates assembly of internal viral proteins into viral filaments and particles.

  • Fyza Y Shaikh‎ et al.
  • mBio‎
  • 2012‎

Respiratory syncytial virus (RSV) is a single-stranded RNA virus in the Paramyxoviridae family that assembles into filamentous structures at the apical surface of polarized epithelial cells. These filaments contain viral genomic RNA and structural proteins, including the fusion (F) protein, matrix (M) protein, nucleoprotein (N), and phosphoprotein (P), while excluding F-actin. It is known that the F protein cytoplasmic tail (FCT) is necessary for filament formation, but the mechanism by which the FCT mediates assembly into filaments is not clear. We hypothesized that the FCT is necessary for interactions with other viral proteins in order to form filaments. In order to test this idea, we expressed the F protein with cytoplasmic tail (CT) truncations or specific point mutations and determined the abilities of these variant F proteins to form filaments independent of viral infection when coexpressed with M, N, and P. Deletion of the terminal three FCT residues (amino acids Phe-Ser-Asn) or mutation of the Phe residue resulted in a loss of filament formation but did not affect F-protein expression or trafficking to the cell surface. Filament formation could be restored by addition of residues Phe-Ser-Asn to an FCT deletion mutant and was unaffected by mutations to Ser or Asn residues. Second, deletion of residues Phe-Ser-Asn or mutation of the Phe residue resulted in a loss of M, N, and P incorporation into virus-like particles. These data suggest that a C-terminal Phe residue in the FCT mediates assembly through incorporation of internal virion proteins into virus filaments at the cell surface.


Structure of the siphophage neck-Tail complex suggests that conserved tail tip proteins facilitate receptor binding and tail assembly.

  • Hao Xiao‎ et al.
  • PLoS biology‎
  • 2023‎

Siphophages have a long, flexible, and noncontractile tail that connects to the capsid through a neck. The phage tail is essential for host cell recognition and virus-host cell interactions; moreover, it serves as a channel for genome delivery during infection. However, the in situ high-resolution structure of the neck-tail complex of siphophages remains unknown. Here, we present the structure of the siphophage lambda "wild type," the most widely used, laboratory-adapted fiberless mutant. The neck-tail complex comprises a channel formed by stacked 12-fold and hexameric rings and a 3-fold symmetrical tip. The interactions among DNA and a total of 246 tail protein molecules forming the tail and neck have been characterized. Structural comparisons of the tail tips, the most diversified region across the lambda and other long-tailed phages or tail-like machines, suggest that their tail tip contains conserved domains, which facilitate tail assembly, receptor binding, cell adsorption, and DNA retaining/releasing. These domains are distributed in different tail tip proteins in different phages or tail-like machines. The side tail fibers are not required for the phage particle to orient itself vertically to the surface of the host cell during attachment.


Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail.

  • Walter Muranyi‎ et al.
  • PLoS pathogens‎
  • 2013‎

The inner structural Gag proteins and the envelope (Env) glycoproteins of human immunodeficiency virus (HIV-1) traffic independently to the plasma membrane, where they assemble the nascent virion. HIV-1 carries a relatively low number of glycoproteins in its membrane, and the mechanism of Env recruitment and virus incorporation is incompletely understood. We employed dual-color super-resolution microscopy visualizing Gag assembly sites and HIV-1 Env proteins in virus-producing and in Env expressing cells. Distinctive HIV-1 Gag assembly sites were readily detected and were associated with Env clusters that always extended beyond the actual Gag assembly site and often showed enrichment at the periphery and surrounding the assembly site. Formation of these Env clusters depended on the presence of other HIV-1 proteins and on the long cytoplasmic tail (CT) of Env. CT deletion, a matrix mutation affecting Env incorporation or Env expression in the absence of other HIV-1 proteins led to much smaller Env clusters, which were not enriched at viral assembly sites. These results show that Env is recruited to HIV-1 assembly sites in a CT-dependent manner, while Env(ΔCT) appears to be randomly incorporated. The observed Env accumulation surrounding Gag assemblies, with a lower density on the actual bud, could facilitate viral spread in vivo. Keeping Env molecules on the nascent virus low may be important for escape from the humoral immune response, while cell-cell contacts mediated by surrounding Env molecules could promote HIV-1 transmission through the virological synapse.


Chemical Proteomics for Target Discovery of Head-to-Tail Cyclized Mini-Proteins.

  • Roland Hellinger‎ et al.
  • Frontiers in chemistry‎
  • 2017‎

Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomally synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study, a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target for the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible functional modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.


Tail tip proteins related to bacteriophage λ gpL coordinate an iron-sulfur cluster.

  • William Tam‎ et al.
  • Journal of molecular biology‎
  • 2013‎

The assembly of long non-contractile phage tails begins with the formation of the tail tip complex (TTC). TTCs are multi-functional protein structures that mediate host cell adsorption and genome injection. The TTC of phage λ is assembled from multiple copies of eight different proteins, including gpL. Purified preparations of gpL and several homologues all displayed a distinct reddish color, suggesting the binding of iron by these proteins. Further characterization of the gpL homologue from phage N15, which was most amenable to in vitro analyses, showed that it contains two domains. The C-terminal domain was demonstrated to coordinate an iron-sulfur cluster, providing the first example of a viral structural protein binding to this type of metal group. We characterized the iron-sulfur cluster using inductively coupled plasma-atomic emission spectroscopy, absorbance spectroscopy, and electron paramagnetic resonance spectroscopy and found that it is an oxygen-sensitive [4Fe-4S](2+) cluster. Four highly conserved cysteine residues were shown to be required for coordinating the iron-sulfur cluster, and substitution of any of these Cys residues with Ser or Ala within the context of λ gpL abolished biological activity. These data imply that the intact iron-sulfur cluster is required for function. The presence of four conserved Cys residues in the C-terminal regions of very diverse gpL homologues suggest that utilization of an iron-sulfur cluster is a widespread feature of non-contractile tailed phages that infect Gram-negative bacteria. In addition, this is the first example of a viral structural protein that binds an iron-sulfur cluster.


MARCH6 and TRC8 facilitate the quality control of cytosolic and tail-anchored proteins.

  • Sandra Stefanovic-Barrett‎ et al.
  • EMBO reports‎
  • 2018‎

Misfolded or damaged proteins are typically targeted for destruction by proteasome-mediated degradation, but the mammalian ubiquitin machinery involved is incompletely understood. Here, using forward genetic screens in human cells, we find that the proteasome-mediated degradation of the soluble misfolded reporter, mCherry-CL1, involves two ER-resident E3 ligases, MARCH6 and TRC8. mCherry-CL1 degradation is routed via the ER membrane and dependent on the hydrophobicity of the substrate, with complete stabilisation only observed in double knockout MARCH6/TRC8 cells. To identify a more physiological correlate, we used quantitative mass spectrometry and found that TRC8 and MARCH6 depletion altered the turnover of the tail-anchored protein heme oxygenase-1 (HO-1). These E3 ligases associate with the intramembrane cleaving signal peptide peptidase (SPP) and facilitate the degradation of HO-1 following intramembrane proteolysis. Our results highlight how ER-resident ligases may target the same substrates, but work independently of each other, to optimise the protein quality control of selected soluble and tail-anchored proteins.


Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast.

  • Ying Zhang‎ et al.
  • Nature communications‎
  • 2021‎

The guided entry of tail-anchored proteins (GET) pathway assists in the posttranslational delivery of tail-anchored proteins, containing a single C-terminal transmembrane domain, to the ER. Here we uncover how the yeast GET pathway component Get4/5 facilitates capture of tail-anchored proteins by Sgt2, which interacts with tail-anchors and hands them over to the targeting component Get3. Get4/5 binds directly and with high affinity to ribosomes, positions Sgt2 close to the ribosomal tunnel exit, and facilitates the capture of tail-anchored proteins by Sgt2. The contact sites of Get4/5 on the ribosome overlap with those of SRP, the factor mediating cotranslational ER-targeting. Exposure of internal transmembrane domains at the tunnel exit induces high-affinity ribosome binding of SRP, which in turn prevents ribosome binding of Get4/5. In this way, the position of a transmembrane domain within nascent ER-targeted proteins mediates partitioning into either the GET or SRP pathway directly at the ribosomal tunnel exit.


Evaluating Phage Tail Fiber Receptor-Binding Proteins Using a Luminescent Flow-Through 96-Well Plate Assay.

  • Emma L Farquharson‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Phages have demonstrated significant potential as therapeutics in bacterial disease control and as diagnostics due to their targeted bacterial host range. Host range has typically been defined by plaque assays; an important technique for therapeutic development that relies on the ability of a phage to form a plaque upon a lawn of monoculture bacteria. Plaque assays cannot be used to evaluate a phage's ability to recognize and adsorb to a bacterial strain of interest if the infection process is thwarted post-adsorption or is temporally delayed, and it cannot highlight which phages have the strongest adsorption characteristics. Other techniques, such as classic adsorption assays, are required to define a phage's "adsorptive host range." The issue shared amongst all adsorption assays, however, is that they rely on the use of a complete bacteriophage and thus inherently describe when all adsorption-specific machinery is working together to facilitate bacterial surface adsorption. These techniques cannot be used to examine individual interactions between a singular set of a phage's adsorptive machinery (like long tail fibers, short tail fibers, tail spikes, etc.) and that protein's targeted bacterial surface receptor. To address this gap in knowledge we have developed a high-throughput, filtration-based, bacterial binding assay that can evaluate the adsorptive capability of an individual set of a phage's adsorption machinery. In this manuscript, we used a fusion protein comprised of an N-terminal bioluminescent tag translationally fused to T4's long tail fiber binding tip (gp37) to evaluate and quantify gp37's relative adsorptive strength against the Escherichia coli reference collection (ECOR) panel of 72 Escherichia coli isolates. Gp37 could adsorb to 61 of the 72 ECOR strains (85%) but coliphage T4 only formed plaques on 8 of the 72 strains (11%). Overlaying these two datasets, we were able to identify ECOR strains incompatible with T4 due to failed adsorption, and strains T4 can adsorb to but is thwarted in replication at a step post-adsorption. While this manuscript only demonstrates our assay's ability to characterize adsorptive capabilities of phage tail fibers, our assay could feasibly be modified to evaluate other adsorption-specific phage proteins.


Viral Membrane Fusion: A Dance Between Proteins and Lipids.

  • Judith M White‎ et al.
  • Annual review of virology‎
  • 2023‎

There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.


Receptor-activated binding of viral fusion proteins to target membranes.

  • Laurie J Earp‎ et al.
  • Methods in enzymology‎
  • 2003‎

This chapter describes three assays to monitor receptor-induced association of the envelope glycoprotein (EnvA) of avian sarcoma/leukosis virus (ASLV) with target bilayers: (1) the original assay for monitoring binding of the EnvA ectodomain (EnvA-PI) to target membranes (liposomes), (2) a modified and miniaturized EnvA-PI-liposome binding assay, and (3) an assay to measure binding of intact sarcoma/leukosis virus subtype A (ASLV-A) virus particles to target membranes. These assays are also useful for studying other receptor-activated viral fusion proteins. When one viral glycoprotein and one “simple” host cell receptor are involved, it should be possible to develop assays directly analogous to those described above for studying Tva-induced binding of the EnvA ectodomain (EnvA-PI) to target membranes. A general prerequisite for a fusion protein/target membrane binding assay is a soluble and correctly oligomeric form of the viral fusion protein ectodomain. The simplest host cell receptors that would be amenable to this type of analysis are type I or type II integral membrane proteins. The soluble versions of the ectodomains of these receptors, produced by genetic engineering or proteolytic release, could then be used to trigger the cognate fusion protein. The methodology could, similarly, be applicable to multimembrane-spanning host cell receptors when the functional part of the receptor is tethered at only one end or where an ectodomain loop preserves enough structure to function as a soluble analog, perhaps by generating a cyclic peptide analog of the loop. The same “receptor reagents” could be employed for intact virus particle/target membrane binding assays.


Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins.

  • David W Morgens‎ et al.
  • eLife‎
  • 2019‎

The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.


Mutation of the TYTLE motif in the cytoplasmic tail of the sendai virus fusion protein deeply affects viral assembly and particle production.

  • Manel Essaidi-Laziosi‎ et al.
  • PloS one‎
  • 2013‎

Enveloped viruses contain glycoproteins protruding from the viral membrane. These proteins play a crucial role in the extra-cellular steps of the virus life cycle, namely attachment to and entry into cells. Their role during the intracellular late phase of virus multiplication has been less appreciated, overlooked by the documented central organizer role of the matrix M protein. Sendai virus, a member of the Paramyxoviridae family, expresses two trans-membrane proteins on its surface, HN and F. In previous work, we have shown that suppression of F in the context of an infection, results in about 70% reduction of virus particle production, a reduction similar to that observed upon suppression of the matrix M protein. Moreover, a TYTLE motif present in F cytoplasmic tail has been proposed essential for virus particle production. In the present work, using original alternate conditional siRNA suppression systems, we generated a double F gene recombinant Sendai virus expressing wt-F and a nonviable mutated TYTLE/5A F protein (F5A). Suppression of the wild type F gene expression in cells infected with this virus allowed the analysis of F5A properties in the context of the infection. Coupling confocal imaging analysis to biochemical characterization, we found that F5A i) was not expressed at the cell surface but restricted to the endoplasmic reticulum, ii) was still capable of interaction with M and iii) had profound effect on M and HN cellular distribution. On the basis of these data, we propose a model for SeV particle formation based on an M/F complex that would serve as nucleation site for virus particle assembly at the cell surface.


Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion.

  • Guangjun Xu‎ et al.
  • Molecular cell‎
  • 2021‎

DNA-induced liquid-liquid phase separation of cyclic GMP-AMP synthase (cGAS) triggers a potent response to detect pathogen infection and promote innate immune signaling. Whether and how pathogens manipulate cGAS-DNA condensation to mediate immune evasion is unknown. We report the identification of a structurally related viral tegument protein family, represented by ORF52 and VP22 from gamma- and alpha-herpesvirinae, respectively, that employs a conserved mechanism to restrict cGAS-DNA phase separation. ORF52/VP22 proteins accumulate into, and effectively disrupt, the pre-formed cGAS-DNA condensation both in vitro and in cells. The inhibition process is dependent on DNA-induced liquid-liquid phase separation of the viral protein rather than a direct interaction with cGAS. Moreover, highly abundant ORF52 proteins carried within viral particles are able to target cGAS-DNA phase separation in early infection stage. Our results define ORF52/VP22-type tegument proteins as a family of inhibitors targeting cGAS-DNA phase separation and demonstrate a mechanism for how viruses overcome innate immunity.


Asna1/TRC40 that mediates membrane insertion of tail-anchored proteins is required for efficient release of Herpes simplex virus 1 virions.

  • Melanie Ott‎ et al.
  • Virology journal‎
  • 2016‎

Herpes simplex virus type 1 (HSV1), a member of the alphaherpesvirinae, can cause recurrent facial lesions and encephalitis. Two membrane envelopment processes, one at the inner nuclear membrane and a second at cytoplasmic membranes are crucial for a productive viral infection. Depending on the subfamily, herpesviruses encode more than 11 different transmembrane proteins including members of the tail-anchored protein family. HSV1 encodes three tail-anchored proteins pUL34, pUL56 and pUS9 characterized by a single hydrophobic region positioned at their C-terminal end that needs to be released from the ribosome prior to posttranslational membrane insertion. Asna1/TRC40 is an ATPase that targets tail-anchored proteins to the endoplasmic reticulum in a receptor-dependent manner. Cell biological data point to a critical and general role of Asna1/TRC40 in tail-anchored protein biogenesis. With this study, we aimed to determine the importance of the tail-anchored insertion machinery for HSV1 infection.


Aquareovirus NS80 recruits viral proteins to its inclusions, and its C-terminal domain is the primary driving force for viral inclusion formation.

  • Ling Shao‎ et al.
  • PloS one‎
  • 2013‎

Cytoplasmic inclusion bodies formed in reovirus-infected cells are the sites of viral replication and assembly. Previous studies have suggested that the NS80 protein of aquareovirus may be involved in the formation of viral inclusion bodies. However, it remains unknown whether other viral proteins are involved in the process, and what regions of NS80 may act coordinately in mediating inclusion formation. Here, we observed that globular cytoplasmic inclusions were formed in virus-infected cells and viral proteins NS80 and NS38 colocalized in the inclusions. During transfection, singly expressed NS80 could form cytoplasmic inclusions and recruit NS38 and GFP-tagged VP4 to these structures. Further treatment of cells with nocodazole, a microtubule inhibitor, did not disrupt the inclusion, suggesting that inclusion formation does not rely on microtubule network. Besides, we identified that the region 530-742 of NS80 was likely the minimal region required for inclusion formation, and the C-tail, coiled-coil region as well as the conserved linker region were essential for inclusion phenotype. Moreover, with series deletions from the N-terminus, a stepwise conversion occurred from large condensed cytoplasmic to small nuclear inclusions, then to a diffused intracellular distribution. Notablely, we found that the nuclear inclusions, formed by NS80 truncations (471 to 513-742), colocalized with cellular protein β-catenin. These data indicated that NS80 could be a major mediator in recruiting NS38 and VP4 into inclusion structures, and the C-terminus of NS80 is responsible for inclusion formation.


A conserved guided entry of tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum.

  • Tarkeshwar Kumar‎ et al.
  • PLoS pathogens‎
  • 2021‎

Tail-anchored (TA) proteins are defined by the absence of N-terminus signal sequence and the presence of a single transmembrane domain (TMD) proximal to their C-terminus. They play fundamental roles in cellular processes including vesicular trafficking, protein translocation and quality control. Some of the TA proteins are post-translationally integrated by the Guided Entry of TA (GET) pathway to the cellular membranes; with their N-terminus oriented towards the cytosol and C-terminus facing the organellar lumen. The TA repertoire and the GET machinery have been extensively characterized in the yeast and mammalian systems, however, they remain elusive in the human malaria parasite Plasmodium falciparum. In this study, we bioinformatically predicted a total of 63 TA proteins in the P. falciparum proteome and revealed the association of a subset with the P. falciparum homolog of Get3 (PfGet3). In addition, our proximity labelling studies either definitively identified or shortlisted the other eligible GET constituents, and our in vitro association studies validated associations between PfGet3 and the corresponding homologs of Get4 and Get2 in P. falciparum. Collectively, this study reveals the presence of proteins with hallmark TA signatures and the involvement of evolutionary conserved GET trafficking pathway for their targeted delivery within the parasite.


Architecture of the bacteriophage lambda tail.

  • Chang Wang‎ et al.
  • Structure (London, England : 1993)‎
  • 2024‎

Bacteriophage lambda has a double-stranded DNA genome and a long, flexible, non-contractile tail encoded by a contiguous block of 11 genes downstream of the head genes. The tail allows host recognition and delivery of viral DNA from the head shell to the cytoplasm of the infected cell. Here, we present a high-resolution structure of the tail complex of bacteriophage lambda determined by cryoelectron microscopy. Most component proteins of the lambda tail were determined at the atomic scale. The structure sheds light on the molecular organization of the extensively studied tail of bacteriophage lambda.


Detailed topology mapping reveals substantial exposure of the "cytoplasmic" C-terminal tail (CTT) sequences in HIV-1 Env proteins at the cell surface.

  • Jonathan D Steckbeck‎ et al.
  • PloS one‎
  • 2013‎

Substantial controversy surrounds the membrane topology of the HIV-1 gp41 C-terminal tail (CTT). While few studies have been designed to directly address the topology of the CTT, results from envelope (Env) protein trafficking studies suggest that the CTT sequence is cytoplasmically localized, as interactions with intracellular binding partners are required for proper Env targeting. However, previous studies from our lab demonstrate the exposure of a short CTT sequence, the Kennedy epitope, at the plasma membrane of intact Env-expressing cells, the exposure of which is not observed on viral particles. To address the topology of the entire CTT sequence, we serially replaced CTT sequences with a VSV-G epitope tag sequence and examined reactivity of cell- and virion-surface Env to an anti-VSV-G monoclonal antibody. Our results demonstrate that the majority of the CTT sequence is accessible to antibody binding on the surface of Env expressing cells, and that the CTT-exposed Env constitutes 20-50% of the cell-surface Env. Cell surface CTT exposure was also apparent in virus-infected cells. Passive transfer of Env through cell culture media to Env negative (non-transfected) cells was not responsible for the apparent cell surface CTT exposure. In contrast to the cell surface results, CTT-exposed Env was not detected on infectious pseudoviral particles containing VSV-G-substituted Env. Finally, a monoclonal antibody directed to the Kennedy epitope neutralized virus in a temperature-dependent manner in a post-attachment neutralization assay. Collectively, these results suggest that the membrane topology of the HIV gp41 CTT is more complex than the widely accepted intracytoplasmic model.


The Functional Role of the 3' Untranslated Region and Poly(A) Tail of Duck Hepatitis A Virus Type 1 in Viral Replication and Regulation of IRES-Mediated Translation.

  • Jun-Hao Chen‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The duck hepatitis A virus type 1 (DHAV-1) is a member of Picornaviridae family, the genome of the virus contains a 5' untranslated region (5' UTR), a large open reading frame that encodes a polyprotein precursor and a 3' UTR followed by a poly(A) tail. The translation initiation of virus proteins depends on the internal ribosome-entry site (IRES) element within the 5' UTR. So far, little information is known about the role of the 3' UTR and poly(A) tail during the virus proliferation. In this study, the function of the 3' UTR and poly(A) tail of DHAV-1 in viral replication and IRES-mediated translation was investigated. The results showed that both 3' UTR and poly(A) tail are important for maintaining viral genome RNA stability and viral genome replication. During DHAV-1 proliferation, at least 20 adenines were required for the optimal genome replication and the virus replication could be severely impaired when the poly (A) tail was curtailed to 10 adenines. In addition to facilitating viral genome replication, the presence of 3' UTR and poly(A) tail significantly enhance IRES-mediated translation efficiency. Furthermore, 3' UTR or poly(A) tail could function as an individual element to enhance the DHAV-1 IRES-mediated translation, during which process, the 3' UTR exerts a greater initiation efficiency than the poly(A)25 tail.


Biogenesis of a Bacteriophage Long Non-Contractile Tail.

  • Anait Seul‎ et al.
  • Journal of molecular biology‎
  • 2021‎

Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.8 MDa tail and uncover its biogenesis mechanisms. A complex between gp21 and the tail distal protein (Dit) gp19.1 is assembled first to build the tail cap (gp19.1-gp21Nter) connected by a flexible hinge to the tail fiber (gp21Cter). The tip of the gp21Cter fiber is loosely associated to gp22. The cap provides a platform where tail tube proteins (TTPs) initiate polymerization around the tape measure protein gp18 (TMP), a reaction dependent on the non-structural tail assembly chaperones gp17.5 and gp17.5* (TACs). Gp17.5 is essential for stability of gp18 in the cell. Helical polymerization stops at a precise tube length followed by binding of proteins gp16.1 (TCP) and gp17 (THJP) to build the tail interface for attachment to the capsid portal system. This finding uncovers the function of the extensively conserved gp16.1-homologs in assembly of long tails. All SPP1 tail components, apart from gp22, share homology to conserved proteins whose coding genes' synteny is broadly maintained in siphoviruses. They conceivably represent the minimal essential protein set necessary to build functional long tails. Proteins homologous to SPP1 tail building blocks feature a variety of add-on modules that diversify extensively the tail core structure, expanding its capability to bind host cells and to deliver the viral genome to the bacterial cytoplasm.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: