Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 9,517 papers

Plasma Membrane Localization of CD36 Requires Vimentin Phosphorylation; A Mechanism by Which Macrophage Vimentin Promotes Atherosclerosis.

  • Seo Yeon Kim‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2022‎

Vimentin is a type III intermediate filament protein expressed in cells of mesenchymal origin. Vimentin has been thought to function mainly as a structural protein and roles of vimentin in other cellular processes have not been extensively studied. Our current study aims to reveal functions of vimentin in macrophage foam cell formation, the critical stage of atherosclerosis. We demonstrated that vimentin null (Vim -/ - ) mouse peritoneal macrophages take up less oxidized LDL (oxLDL) than vimentin wild type (Vim +/+) macrophages. Despite less uptake of oxLDL in Vim -/ - macrophages, Vim +/+ and Vim -/ - macrophages did not show difference in expression of CD36 known to mediate oxLDL uptake. However, CD36 localized in plasma membrane was 50% less in Vim -/ - macrophages than in Vim +/+ macrophages. OxLDL/CD36 interaction induced protein kinase A (PKA)-mediated vimentin (Ser72) phosphorylation. Cd36 -/ - macrophages did not exhibit vimentin phosphorylation (Ser72) in response to oxLDL. Experiments using phospho-mimetic mutation of vimentin revealed that macrophages with aspartate-substituted vimentin (V72D) showed more oxLDL uptake and membrane CD36. LDL receptor null (Ldlr -/ - ) mice reconstituted with Vim -/ - bone marrow fed a western diet for 15 weeks showed 43% less atherosclerotic lesion formation than Ldlr -/ - mice with Vim +/+ bone marrow. In addition, Apoe -/ -Vim- / - (double null) mice fed a western diet for 15 weeks also showed 57% less atherosclerotic lesion formation than Apoe -/ - and Vim +/+mice. We concluded that oxLDL via CD36 induces PKA-mediated phosphorylation of vimentin (Ser72) and phosphorylated vimentin (Ser72) directs CD36 trafficking to plasma membrane in macrophages. This study reveals a function of vimentin in CD36 trafficking and macrophage foam cell formation and may guide to establish a new strategy for the treatment of atherosclerosis.


The sweet side of vimentin.

  • Natasha T Snider‎ et al.
  • eLife‎
  • 2018‎

A protein modification called O-linked glycosylation regulates the interactions between vimentin molecules under normal conditions, and the ability of Chlamydia bacteria to replicate after they infect cells.


Molecular structure of soluble vimentin tetramers.

  • Pieter-Jan Vermeire‎ et al.
  • Scientific reports‎
  • 2023‎

Intermediate filaments (IFs) are essential constituents of the metazoan cytoskeleton. A vast family of cytoplasmic IF proteins are capable of self-assembly from soluble tetrameric species into typical 10-12 nm wide filaments. The primary structure of these proteins includes the signature central 'rod' domain of ~ 300 residues which forms a dimeric α-helical coiled coil composed of three segments (coil1A, coil1B and coil2) interconnected by non-helical, flexible linkers (L1 and L12). The rod is flanked by flexible terminal head and tail domains. At present, the molecular architecture of mature IFs is only poorly known, limiting our capacity to rationalize the effect of numerous disease-related mutations found in IF proteins. Here we addressed the molecular structure of soluble vimentin tetramers which are formed by two antiparallel, staggered dimers with coil1B domains aligned (A11 tetramers). By examining a series of progressive truncations, we show that the presence of the coil1A domain is essential for the tetramer formation. In addition, we employed a novel chemical cross-linking pipeline including isotope labelling to identify intra- and interdimeric cross-links within the tetramer. We conclude that the tetramer is synergistically stabilized by the interactions of the aligned coil1B domains, the interactions between coil1A and the N-terminal portion of coil2, and the electrostatic attraction between the oppositely charged head and rod domains. Our cross-linking data indicate that, starting with a straight A11 tetramer, flexibility of linkers L1 and L12 enables 'backfolding' of both the coil1A and coil2 domains onto the tetrameric core formed by the coil1B domains. Through additional small-angle X-ray scattering experiments we show that the elongated A11 tetramers dominate in low ionic strength solutions, while there is also a significant structural flexibility especially in the terminal domains.


Vimentin as a Cap of Invisibility: Proposed Role of Vimentin in Rabbit Hemorrhagic Disease Virus (RHDV) Infection.

  • Małgorzata Blatkiewicz‎ et al.
  • Viruses‎
  • 2021‎

Vimentin is an intermediate filament, a cytoskeleton protein expressed mainly in cells of mesenchymal origin. Increasing evidence indicates that vimentin could play a key role in viral infections. Therefore, changes in tissue and extracellular vimentin expression and associated signal trails may determine/protect the fate of cells and the progression of disease caused by viral infection. Rabbit hemorrhagic disease virus (RHDV), genotype GI.1, is an etiological agent that causes a severe and highly lethal disease-RHD (rabbit hemorrhagic disease). This article evaluates the gene and protein expression of vimentin in the tissues (liver, lungs, spleen, and kidneys) and serum of rabbits experimentally infected with two RHDV variants (GI.1a). The VIM mRNA expression levels in the tissues were determined using reverse transcription quantitative real-time PCR (RT-qPCR). In addition, the amount of vimentin protein in the serum was analyzed by an ELISA test. We observed significantly elevated expression levels of VIM mRNA and protein in the liver and kidney tissues of infected rather than healthy rabbits. In addition, VIM mRNA expression was increased in the lung tissues; meanwhile, we observed only protein-enhanced vimentin in the spleen. The obtained results are significant and promising, as they indicate the role of vimentin in RHDV infection and the course of RHD. The role of vimentin in RHDV infection could potentially rely on the one hand, on creating a cap of invisibility against the intracellular viral spread, or, on the other hand, after the damage of cells, vimentin could act as a signal of tissue damage.


Vimentin mediates uptake of C3 exoenzyme.

  • Astrid Rohrbeck‎ et al.
  • PloS one‎
  • 2014‎

Clostridium botulinum C3 exoenzyme (C3) selectively inactivates RhoA/B/C GTPases by ADP-ribosylation. Based on this substrate specificity C3 is a well-established tool in cell biology. C3 is taken up by eukaryotic cells although lacking an uptake and translocation domain. Based on different approaches vimentin was identified as membranous C3-interaction partner by mass spectrometry. Vimentin in fact was partly localized at the outer surface of hippocampal HT22 cells and J744A.1 macrophages. Domain analysis identified the rod domain as binding partner of C3. Vimentin was also involved in uptake of C3 as shown by knock down of vimentin in HT22 and J774A.1 cells. The involvement of vimentin in uptake of C3 was further supported by the findings that the vimentin disruptor acrylamide blocked uptake of C3. Vimentin is not only a major organizing element of the intermediate filament network but is also involved in both binding and uptake of C3 exoenzyme.


Geometric control of vimentin intermediate filaments.

  • Shagufta H Shabbir‎ et al.
  • Biomaterials‎
  • 2014‎

Significant efforts have addressed the role of vimentin intermediate filaments (VIF) in cell motility, shape, adhesion and their connections to microfilaments (MF) and microtubules (MT). The present work uses micropatterned substrates to control the shapes of mouse fibroblasts and demonstrates that the cytoskeletal elements are dependent on each other and that unlike MF, VIF are globally controlled. For example, both square and circle shaped cells have a similar VIF distribution while MF distributions in these two shapes are quite different and depend on the curvature of the shape. Furthermore, in asymmetric and polarized shaped cells VIF avoid the sharp edges where MF are highly localized. Experiments with vimentin null mouse embryonic fibroblasts (MEFs) adherent to polarized (teardrop) and un-polarized (dumbbell) patterns show that the absence of VIF alters microtubule organization and perturbs cell polarity. The results of this study also demonstrate the utility of patterned substrates for quantitative studies of cytoskeleton organization in adherent cells.


Murine colitis is mediated by vimentin.

  • Nirit Mor-Vaknin‎ et al.
  • Scientific reports‎
  • 2013‎

Vimentin, an abundant intermediate filament protein, presumably has an important role in stabilizing intracellular architecture, but its function is otherwise poorly understood. In a vimentin knockout (Vim KO) mouse model, we note that Vim KO mice challenged with intraperitoneal Escherichia coli control bacterial infection better than do wild-type (WT) mice. In vitro, Vim KO phagocytes show significantly increased capacity to mediate bacterial killing by abundant production of reactive oxygen species (ROS) and nitric oxides, likely due to interactions with the p47phox active subunit of NADPH oxidase. In acute colitis induced by dextran sodium sulfate (DSS), Vim KO mice develop significantly less gut inflammation than do WT mice. Further, Vim KO mice have markedly decreased bacterial extravasation in the setting of DSS-induced acute colitis, consistent with decreased intestinal disease. Our results suggest that vimentin impedes bacterial killing and production of ROS, thereby contributing to the pathogenesis of acute colitis.


USP14 de-ubiquitinates vimentin and miR-320a modulates USP14 and vimentin to contribute to malignancy in gastric cancer cells.

  • Ying Zhu‎ et al.
  • Oncotarget‎
  • 2017‎

Vimentin plays important roles in the epithelial-to-mesenchymal transition (EMT). In this study, we found that vimentin was highly expressed in human gastric cancer (GC) tissues and cell lines and significantly promoted cell growth, migration and invasion. Ubiquitin-specific protease 14 (USP14) interacted with the vimentin protein, which led to its de-ubiquitination. miR-320a was found to bind to the 3'UTR of both vimentin and USP14 transcripts and downregulate the expression of both proteins. The downregulation of miR-320a upregulates vimentin expression by directly binding to the 3'UTR of vimentin to derepress expression and indirectly by augmenting USP14 to increase vimentin stability in GC cells. Taken together, these results provide new insight into malignancy in gastric cancers.


Vimentin organization modulates the formation of lamellipodia.

  • Brian T Helfand‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Vimentin intermediate filaments (VIF) extend throughout the rear and perinuclear regions of migrating fibroblasts, but only nonfilamentous vimentin particles are present in lamellipodial regions. In contrast, VIF networks extend to the entire cell periphery in serum-starved or nonmotile fibroblasts. Upon serum addition or activation of Rac1, VIF are rapidly phosphorylated at Ser-38, a p21-activated kinase phosphorylation site. This phosphorylation of vimentin is coincident with VIF disassembly at and retraction from the cell surface where lamellipodia form. Furthermore, local induction of photoactivatable Rac1 or the microinjection of a vimentin mimetic peptide (2B2) disassemble VIF at sites where lamellipodia subsequently form. When vimentin organization is disrupted by a dominant-negative mutant or by silencing, there is a loss of polarity, as evidenced by the formation of lamellipodia encircling the entire cell, as well as reduced cell motility. These findings demonstrate an antagonistic relationship between VIF and the formation of lamellipodia.


Increased phosphorylation of vimentin in noninfiltrative meningiomas.

  • Ali Bouamrani‎ et al.
  • PloS one‎
  • 2010‎

Tissue invasion or tissue infiltration are clinical behaviors of a poor-prognosis subset of meningiomas. We carried out proteomic analyses of tissue extracts to discover new markers to accurately distinguish between infiltrative and noninfiltrative meningiomas.


Vimentin protects differentiating stem cells from stress.

  • Sundararaghavan Pattabiraman‎ et al.
  • Scientific reports‎
  • 2020‎

Vimentin is one of the first cytoplasmic intermediate filaments to be expressed in mammalian cells during embryogenesis, but its role in cellular fitness has long been a mystery. Vimentin is acknowledged to play a role in cell stiffness, cell motility, and cytoplasmic organization, yet it is widely considered to be dispensable for cellular function and organismal development. Here, we show that Vimentin plays a role in cellular stress response in differentiating cells, by recruiting aggregates, stress granules, and RNA-binding proteins, directing their elimination and asymmetric partitioning. In the absence of Vimentin, pluripotent embryonic stem cells fail to differentiate properly, with a pronounced deficiency in neuronal differentiation. Our results uncover a novel function for Vimentin, with important implications for development, tissue homeostasis, and in particular, stress response.


Host Cell Vimentin Restrains Toxoplasma gondii Invasion and Phosphorylation of Vimentin is Partially Regulated by Interaction with TgROP18.

  • Cheng He‎ et al.
  • International journal of biological sciences‎
  • 2017‎

The obligate intracellular parasite, Toxoplasma gondii, manipulates the cytoskeleton of its host cells to facilitate infection. A significant rearrangement of host cell vimentin around Toxoplasma parasitophorous vacuoles is observed during the course of infection. ROP18 (TgROP18) is a serine-threonine kinase secreted by T. gondii rhoptry and a major virulence factor; however, the mechanisms by which this kinase modulates host factors remain poorly understood. Different and dynamic patterns of vimentin solubility, phosphorylation, and expression levels were observed in host cells infected with T. gondii strain RH and RH Δrop18 strains, suggesting that TgROP18 contributes to the regulation of these dynamic patterns. Additionally, host cell vimentin was demonstrated to interact with and be phosphorylated by TgROP18. A significant increase in T. gondii infection rate was observed in vimentin knockout human brain microvessel endothelial cells (HBMEC), while vimentin knockout or knock down in host cells had no impact on parasite proliferation and egress. These results indicate that host cell vimentin can inhibit T. gondii invasion. Interestingly, western blotting of different mouse tissues indicated that the lowest vimentin expression level was present in the brain, which may explain the mechanism underlying the nervous system tropism of T. gondii, and the phenomenon of huge cyst burdens developing in the mouse brain during chronic infection.


Extracellular vimentin modulates human dendritic cell activation.

  • Mary Beth Yu‎ et al.
  • Molecular immunology‎
  • 2018‎

Vimentin is an intermediate filament protein traditionally considered to be an intracellular protein with a structural role. However, recent evidence suggests that vimentin can also be found outside the cell in disease conditions such as cancer, traumatic tissue injury, and inflammation. Extracellular vimentin was previously found to stimulate innate immunity by increasing monocyte and macrophage ability to kill bacteria. However, vimentin has also been previously found to decrease neutrophil infiltration into inflamed tissue. How extracellular vimentin affects the initiation of adaptive immune responses is unknown. Initiation of adaptive immunity involves priming of naïve T cells by antigen-presenting cells, the most effective of which are dendritic cells (DCs). In this study, we demonstrate how extracellular vimentin modulates lipopolysaccharide (LPS) - induced activation of human DCs. Using cytometric bead arrays, we show that extracellular vimentin decreases LPS-activated DC secretion of pro-inflammatory cytokines IL-6 and IL-12 while increasing secretion of the anti-inflammatory cytokine IL-10. Using flow cytometry, we show that extracellular vimentin does not significantly affect LPS-induced DC surface expression of MHC I (HLA-ABC) or MHC II (HLA-DR) presentation molecules, costimulatory factors (CD80, CD86), or the DC maturation marker (CD83). Further, LPS-stimulated DCs co-cultured with allogeneic naïve CD4 + T cells (Th0) induced less secretion of the pro-inflammatory Th1 effector cytokine IFN-γ in the presence of vimentin than in the presence of LPS alone. This result suggests that vimentin reduces Th1 differentiation. Taken together, our data suggest that extracellular vimentin may inhibit pro-inflammatory adaptive immune responses, by blocking DC secretion of pro-inflammatory cytokines. Thus, extracellular vimentin may play an important role in cancer or trauma-complications by inducing suppression of the adaptive immune response. In a positive sense, the presence of extracellular vimentin may prevent tissue-damage from contributing to the development of autoimmunity. Consequently, extracellular vimentin may become a novel drug target for treatment of a variety of pro- and anti-inflammatory disease conditions.


An anti vimentin antibody promotes tube formation.

  • Mathias Lindh Jørgensen‎ et al.
  • Scientific reports‎
  • 2017‎

In recent years, there has been an increasing appreciation of the importance of secreted and extracellular proteins that traditionally have been considered as intracellular components. Vimentin is a highly abundant intermediate filament protein, and its intracellular functions have been investigated in a large number of studies. Recently, however, vimentin has been shown to take part in significant processes outside the cell. Our understanding of the functions of extracellular vimentin is, however, limited. In this study we demonstrate that a vimentin specific antibody, obtained by phage antibody technology, promotes tube formation of endothelial cells in a 2D matrigel assay. By binding vimentin, the antibody increases the tube formation by 21% after 5 hours of incubation. Addition of the antibody directly to cultured endothelial cells does not influence endothelial cell migration or proliferation. The enhanced tube formation can be seen for up to 10 hours where after the effect decreases. It is shown that the antibody-binding site is located on the coil 2 domain of vimentin. To our knowledge this is the first study that demonstrates an enhanced tube formation by binding vimentin in a 2D matrigel assay under normoxic conditions.


The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells.

  • Catherine H Kaschula‎ et al.
  • BMC cancer‎
  • 2019‎

Garlic has been used for centuries for its flavour and health promoting properties that include protection against cancer. The vinyl disulfide-sulfoxide ajoene is one of the phytochemicals found in crushed cloves, hypothesised to act by S-thiolating reactive cysteines in target proteins.


Harmful vimentin manifests itself as multiorgan failure.

  • John E Eriksson‎
  • European journal of human genetics : EJHG‎
  • 2020‎

No abstract available


Vimentin regulates activation of the NLRP3 inflammasome.

  • Gimena dos Santos‎ et al.
  • Nature communications‎
  • 2015‎

Activation of the NLRP3 inflammasome and subsequent maturation of IL-1β have been implicated in acute lung injury (ALI), resulting in inflammation and fibrosis. We investigated the role of vimentin, a type III intermediate filament, in this process using three well-characterized murine models of ALI known to require NLRP3 inflammasome activation. We demonstrate that central pathophysiologic events in ALI (inflammation, IL-1β levels, endothelial and alveolar epithelial barrier permeability, remodelling and fibrosis) are attenuated in the lungs of Vim(-/-) mice challenged with LPS, bleomycin and asbestos. Bone marrow chimeric mice lacking vimentin have reduced IL-1β levels and attenuated lung injury and fibrosis following bleomycin exposure. Furthermore, decreased active caspase-1 and IL-1β levels are observed in vitro in Vim(-/-) and vimentin-knockdown macrophages. Importantly, we show direct protein-protein interaction between NLRP3 and vimentin. This study provides insights into lung inflammation and fibrosis and suggests that vimentin may be a key regulator of the NLRP3 inflammasome.


Substrate stiffness regulates solubility of cellular vimentin.

  • Maria E Murray‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

The intermediate filament protein vimentin is involved in the regulation of cell behavior, morphology, and mechanical properties. Previous studies using cells cultured on glass or plastic substrates showed that vimentin is largely insoluble. Although substrate stiffness was shown to alter many aspects of cell behavior, changes in vimentin organization were not reported. Our results show for the first time that mesenchymal stem cells (hMSCs), endothelial cells, and fibroblasts cultured on different-stiffness substrates exhibit biphasic changes in vimentin detergent solubility, which increases from nearly 0 to 67% in hMSCs coincident with increases in cell spreading and membrane ruffling. When imaged, the detergent-soluble vimentin appears to consist of small fragments the length of one or several unit-length filaments. Vimentin detergent solubility decreases when these cells are subjected to serum starvation, allowed to form cell-cell contacts, after microtubule disruption, or inhibition of Rac1, Rho-activated kinase, or p21-activated kinase. Inhibiting myosin or actin assembly increases vimentin solubility on rigid substrates. These data suggest that in the mechanical environment in vivo, vimentin is more dynamic than previously reported and its assembly state is sensitive to stimuli that alter cellular tension and morphology.


Immunohistochemical analysis of vimentin in oral submucous fibrosis.

  • Meghanand T Nayak‎ et al.
  • Journal of cancer epidemiology‎
  • 2013‎

Background. Oral submucous fibrosis (OSF), a precancerous condition, is characterized by abnormal accumulation of collagen fibers in oral submucosa. Vimentin is a Class 2 intermediate filament (IF) and primarily expressed in cells of mesenchymal origin. Vimentin is also found to be involved in cell growth, cell cycling, and tumour differentiation. Objective. The purpose of the study was to compare the expression of vimentin in various histological grades of OSF. Materials and Methods. To assess the immunohistochemical expression of vimentin in 20 mild cases of OSF, 20 severe cases of OSF, and ten cases of normal oral buccal mucosa. Results. The overall staining intensity of vimentin significantly increased statistically (P < 0.01) in OSF cases over normal control. A significant increase in the staining intensity of vimentin was also noted in the fibroblasts of severe cases of OSF (P = 0.03). Conclusion. Considering the marked vimentin expression in the present study, future studies should include cytoskeleton IF and other filaments in the fibroblasts of OSF.


Increase of cell surface vimentin is associated with vimentin network disruption and subsequent stress-induced premature senescence in human chondrocytes.

  • Jana Riegger‎ et al.
  • eLife‎
  • 2023‎

Accumulation of dysfunctional chondrocytes has detrimental consequences on the cartilagehomeostasis and is thus thought to play a crucial role during the pathogenesis of osteoarthritis(OA). However, the underlying mechanisms of phenotypical alteration in chondrocytes areincompletely understood. Here, we provide evidence that disruption of the intracellularvimentin network and consequent phenotypical alteration in human chondrocytes results in anexternalization of the intermediate filament. The presence of the so-called cell surfacevimentin (CSV) on chondrocytes was associated with the severity of tissue degeneration inclinical OA samples and was enhanced after mechanical injury of cartilage tissue. By meansof a doxorubicine-based in vitro model of stress-induced premature senescence (SIPS), wecould confirm the connection between cellular senescence and amount of CSV. AlthoughsiRNA-mediated silencing of CDKN2A clearly reduced the senescent phenotype as well asCSV levels of human chondrocytes, cellular senescence could not be completely reversed.Interestingly, knockdown of vimentin resulted in a SIPS-like phenotype and consequentlyincreased CSV. Therefore, we concluded that the integrity of the intracellular vimentinnetwork is crucial to maintain cellular function in chondrocytes. This assumption could beconfirmed by chemically- induced collapse of the vimentin network, which resulted in cellularstress and enhanced CSV expression. Regarding its biological function, CSV was found to beassociated with enhanced chondrocyte adhesion and plasticity. While osteogenic capacitiesseemed to be enhanced in chondrocytes expressing high levels of CSV, the chondrogenicpotential was clearly compromised. Overall, our study reinforces the importance of thevimentin network in maintenance of the chondrogenic phenotype and introduces CSV as anovel membrane-bound marker of dysfunctional chondrocytes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: