Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Vestibular Aging Process from 3D Physiological Imaging of the Membranous Labyrinth.

  • Hisaya Tanioka‎ et al.
  • Scientific reports‎
  • 2020‎

There is no three-dimensional (3D) technique to study the microanatomical structures of the in vivo 3D vestibular membranous labyrinth. Recent two MRI methods using a contrast agent can only depict the low-resolution imaging of endolymphatic hydrops. Therefore, we provide the new precise volume rendering algorithms to create the in vivo 3D vestibular membranous labyrinth images from high-resolution temporal bone low-dose CT data. We also ascertain whether the created 3D microstructure images are reliable in anatomical findings. Secondary, we will analyze the age-related changes of the vestibular membranous labyrinth. These created 3D membranous vestibular images were almost consistent with the appearance, dimensions, areas, and angles from those acquired in previous histological works. The age-related image changes showed the enlarged saccule in females, the enlarged utricle in males, and the dilated tendency of the lateral semicircular duct. These results may correlate to the findings of the previous physiological works on cervical and ocular vestibular evoked myogenic potentials, and gait studies. The age-related balance disorders may be associated with the enlargement of each membranous organ in the vestibule. This new imaging technique now enables visualizing microanatomical changes in the in vivo membranous vestibulum, and these created 3D images may suggest physiological information.


Three-dimensional reconstruction of the membranous vestibular labyrinth in the toadfish, Opsanus tau.

  • T A Ghanem‎ et al.
  • Hearing research‎
  • 1998‎

Membranous vestibular labyrinths from the oyster toadfish, Opsanus tau, were fixed, dissected from the animal, stained, and embedded in rectangular blocks of clear histological resin. Photomicrographs of complete embedded labyrinths were taken from six orthogonal directions and used to construct three-dimensional (3D) geometrical models of the semicircular canals, ampullae, utricular vestibule and common crus. Membraneous ducts and ampullae were modeled using a set of cross-sectional elliptical curves laced together to generate curved tubular models of each structure. The ensemble of these curved tubes was used to generate a complete 3D reconstruction of the outside surface of the membranous labyrinth. When viewed from six orthogonal directions, reconstructions closely matched the embedded tissue. Dimensions of the reconstruction and histological sections were compared to measurements of fresh tissue taken from the same animals prior to fixation and used to correct the reconstructions for tissue shrinkage. Results provide estimates of the endolymphatic volumes, local cross-sectional areas and elliptical eccentricities as well as 3D orientations of the geometric canal planes relative to the skull. Ten micrometer histological sections of the material were also prepared to measure wall thickness in various regions of the labyrinth.


Morphological validation of a novel bi-material 3D-printed model of temporal bone for middle ear surgery education.

  • Jordan Chauvelot‎ et al.
  • Annals of translational medicine‎
  • 2020‎

A new model of 3D-printed temporal bone with an innovative distinction between soft and hard tissues is described and presented in the present study. An original method is reported to quantify the model's ability to reproduce the complex anatomy of this region.


Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing.

  • Min-A Kim‎ et al.
  • Theranostics‎
  • 2019‎

Rationale: Mutations of SLC26A4 that abrogate pendrin, expressed in endolymphatic sac, cochlea and vestibule, are known to cause autosomal recessive sensorineural hearing loss with enlargement of the membranous labyrinth. This is the first study to demonstrate the feasibility of gene therapy for pendrin-related hearing loss. Methods: We used a recombinant viral vector to transfect Slc26a4 cDNA into embryonic day 12.5 otocysts of pendrin-deficient knock-out (Slc26a4∆/∆ ) and pendrin-deficient knock-in (Slc26a4tm1Dontuh/tm1Dontuh ) mice. Results: Local gene-delivery resulted in spatially and temporally limited pendrin expression, prevented enlargement, failed to restore vestibular function, but succeeded in the restoration of hearing. Restored hearing phenotypes included normal hearing as well as sudden, fluctuating, and progressive hearing loss. Conclusion: Our study illustrates the feasibility of gene therapy for pendrin-related hearing loss, suggests differences in the requirement of pendrin between the cochlea and the vestibular labyrinth, and documents that insufficient pendrin expression during late embryonal and early postnatal development of the inner ear can cause sudden, fluctuating and progressive hearing loss without obligatory enlargement of the membranous labyrinth.


Physical therapy interventions for older people with vertigo, dizziness and balance disorders addressing mobility and participation: a systematic review.

  • Verena Regauer‎ et al.
  • BMC geriatrics‎
  • 2020‎

Vertigo, dizziness and balance disorders (VDB) are among the most relevant contributors to the burden of disability among older adults living in the community and associated with immobility, limitations of activities of daily living and decreased participation. The aim of this study was to identify the quality of evidence of physical therapy interventions that address mobility and participation in older patients with VDB and to characterize the used primary and secondary outcomes.


A multiscale imaging and modelling dataset of the human inner ear.

  • Nicolas Gerber‎ et al.
  • Scientific data‎
  • 2017‎

Understanding the human inner ear anatomy and its internal structures is paramount to advance hearing implant technology. While the emergence of imaging devices allowed researchers to improve understanding of intracochlear structures, the difficulties to collect appropriate data has resulted in studies conducted with few samples. To assist the cochlear research community, a large collection of human temporal bone images is being made available. This data descriptor, therefore, describes a rich set of image volumes acquired using cone beam computed tomography and micro-CT modalities, accompanied by manual delineations of the cochlea and sub-compartments, a statistical shape model encoding its anatomical variability, and data for electrode insertion and electrical simulations. This data makes an important asset for future studies in need of high-resolution data and related statistical data objects of the cochlea used to leverage scientific hypotheses. It is of relevance to anatomists, audiologists, computer scientists in the different domains of image analysis, computer simulations, imaging formation, and for biomedical engineers designing new strategies for cochlear implantations, electrode design, and others.


The evolution of the vestibular apparatus in apes and humans.

  • Alessandro Urciuoli‎ et al.
  • eLife‎
  • 2020‎

Phylogenetic relationships among extinct hominoids (apes and humans) are controversial due to pervasive homoplasy and the incompleteness of the fossil record. The bony labyrinth might contribute to this debate, as it displays strong phylogenetic signal among other mammals. However, the potential of the vestibular apparatus for phylogenetic reconstruction among fossil apes remains understudied. Here we test and quantify the phylogenetic signal embedded in the vestibular morphology of extant anthropoids (monkeys, apes and humans) and two extinct apes (Oreopithecus and Australopithecus) as captured by a deformation-based 3D geometric morphometric analysis. We also reconstruct the ancestral morphology of various hominoid clades based on phylogenetically-informed maximum likelihood methods. Besides revealing strong phylogenetic signal in the vestibule and enabling the proposal of potential synapomorphies for various hominoid clades, our results confirm the relevance of vestibular morphology for addressing the controversial phylogenetic relationships of fossil apes.


A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear.

  • Isabelle Schrauwen‎ et al.
  • Hearing research‎
  • 2016‎

The mammalian inner ear consists of the cochlea and the vestibular labyrinth (utricle, saccule, and semicircular canals), which participate in both hearing and balance. Proper development and life-long function of these structures involves a highly complex coordinated system of spatial and temporal gene expression. The characterization of the inner ear transcriptome is likely important for the functional study of auditory and vestibular components, yet, primarily due to tissue unavailability, detailed expression catalogues of the human inner ear remain largely incomplete. We report here, for the first time, comprehensive transcriptome characterization of the adult human cochlea, ampulla, saccule and utricle of the vestibule obtained from patients without hearing abnormalities. Using RNA-Seq, we measured the expression of >50,000 predicted genes corresponding to approximately 200,000 transcripts, in the adult inner ear and compared it to 32 other human tissues. First, we identified genes preferentially expressed in the inner ear, and unique either to the vestibule or cochlea. Next, we examined expression levels of specific groups of potentially interesting RNAs, such as genes implicated in hearing loss, long non-coding RNAs, pseudogenes and transcripts subject to nonsense mediated decay (NMD). We uncover the spatial specificity of expression of these RNAs in the hearing/balance system, and reveal evidence of tissue specific NMD. Lastly, we investigated the non-syndromic deafness loci to which no gene has been mapped, and narrow the list of potential candidates for each locus. These data represent the first high-resolution transcriptome catalogue of the adult human inner ear. A comprehensive identification of coding and non-coding RNAs in the inner ear will enable pathways of auditory and vestibular function to be further defined in the study of hearing and balance. Expression data are freely accessible at https://www.tgen.org/home/research/research-divisions/neurogenomics/supplementary-data/inner-ear-transcriptome.aspx.


Developmental changes of ENaC expression and function in the inner ear of pendrin knock-out mice as a perspective on the development of endolymphatic hydrops.

  • Bo Gyung Kim‎ et al.
  • PloS one‎
  • 2014‎

Pendrin mutations cause enlarged vestibular aqueducts and various degrees of sensorineural hearing loss. The selective abolition of pendrin causes dilation of the membranous labyrinth known as endolymphatic hydrops, loss of the endocochlear potential, and consequently loss of hearing function. Because Na+ transport is one of the most important driving forces for fluid transport, the epithelial Na+ channel (ENaC) is believed to play an important role in fluid volume regulation in the inner ear. Therefore, the dysfunction of Na+ transport through ENaC by the acidification of endolymph in Pendred syndrome is one of the potential causes of endolymphatic hydrops. We investigated the changes of ENaC expression and function during the development of the pendrin knock-out mouse. In the cochlea, the expression of β and γENaC was significantly increased at P56 in Pds-/- mice compared with Pds+/+ mice. In the vestibule, the expression of βENaC was significantly increased at P56, and γENaC expression significantly increased from P6 to P56 in Pds-/- mice. The ENaC-dependent trans-epithelial current was not significantly different between Pds+/+ and Pds-/- mice in Reissner's membrane or the saccular extramacular roof epithelium at P0, but the current was significantly increased in Pds-/- mice at P56 compared with Pds+/+ mice. These findings indicate that the expression and function of ENaC were enhanced in Pds-/- mice after the development of endolymphatic hydrops as a compensatory mechanism. This result provides insight into the role of Na+ transport in the development and regulation of endolymphatic hydrops due to pendrin mutations.


Congenital Membranous Stapes Footplate Producing Episodic Pressure-Induced Perilymphatic Fistula Symptoms.

  • Han Matsuda‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Introduction: Recent third window syndrome studies have revealed that the intact bony labyrinth and differences in the stiffness of the oval and round windows are essential for proper cochlear and vestibular function. Herein we report a patient with a congenital dehiscence of the right stapes footplate. This dehiscence caused long-standing episodic pressure-induced vertigo (Hennebert sign). At the time of presentation, her increased thoracic pressure changes induced the rupture of the membranous stapes footplate. Perilymph leakage was confirmed by imaging and a biochemical test [perilymph-specific protein Cochlin-tomoprotein (CTP) detection test]. Case Report: A 32-year-old woman presented with a sudden onset of right-sided hearing loss and severe true rotational vertigo, which occurred immediately after nose-blowing. CT scan showed a vestibule pneumolabyrinth. Perilymphatic fistula (PLF) repair surgery was performed. During the operation, a bony defect of 0.5 mm at the center of the right stapes footplate, which was covered by a membranous tissue, and a tear was found in this anomalous membrane. A perilymph-specific protein CTP detection test was positive. The fistula in the footplate was sealed. Postoperatively, the vestibular symptoms resolved, and her hearing improved. A more detailed history revealed that, for 15 years, she experienced true rotational vertigo when she would blow her nose. After she stopped blowing her nose, she would again feel normal. Discussion: There is a spectrum of anomalies that can occur in the middle ear, including the ossicles. The present case had a dehiscence of the stapes, with a small membranous layer of tissue covering a bony defect in the center of the footplate. Before her acute presentation to the hospital, this abnormal footplate with dehiscence induced pathological pressure-evoked fluid-mechanical waves in the inner ear, which resulted in Hennebert sign. When patients have susceptibility (e.g., weak structure) to rupture, such as that identified in this case, PLF can be caused by seemingly insignificant events such as nose-blowing, coughing, or straining. Conclusion: This case demonstrates that PLF is a real clinical entity. Appropriate recognition and treatment of PLF can improve a patient's condition and, hence, the quality of life.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: