Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 181 papers

Changes in protein expression in the rat medial vestibular nuclei during vestibular compensation.

  • Janet M Paterson‎ et al.
  • The Journal of physiology‎
  • 2006‎

The molecular mechanisms of neural and synaptic plasticity in the vestibular nuclei during 'vestibular compensation', the behavioural recovery that follows deafferentation of one inner ear, are largely unknown. In this study we have used differential proteomics techniques to determine changes in protein expression in ipsi-lesional and contra-lesional medial vestibular nuclei (MVN) of rats, 1 week after either sham surgery or unilateral labyrinthectomy (UL). A systematic comparison of 634 protein spots in two-dimensional electrophoresis gels across five experimental conditions revealed 54 spots, containing 26 proteins whose level was significantly altered 1 week post-UL. The axon-guidance-associated proteins neuropilin-2 and dehydropyriminidase-related protein-2 were upregulated in the MVN after UL. Changes in levels of further specific proteins indicate a coordinated upregulation of mitochondrial function, ATP biosynthesis and phosphate metabolism in the vestibular nuclei 1 week post-UL. These may reflect the metabolic energy demands of processes such as gliosis, neuronal outgrowth and synaptic remodelling that occur after UL. Our findings suggest novel roles for axon elaboration and guidance molecules, as well as mitochondrial and metabolic regulatory proteins, in the post-lesional physiology of the MVN during vestibular system plasticity.


Otolith fibers and terminals in chick vestibular nuclei.

  • Anastas Popratiloff‎ et al.
  • The Journal of comparative neurology‎
  • 2007‎

The distribution of gravity-sensing, otolith afferent fibers and terminals was studied in the vestibular nuclei of 4-5-day hatchling chicks by using single and double labeling of fibers and terminals with biocytin conjugated to Alexa Fluor and confocal imaging. The vestibular nuclei are represented in a series of five transverse sections of the brainstem immunolabeled with MAP2. Saccular fibers entered the medulla posterior to and at the level of the posterior tangential vestibular nucleus and coursed through ventral parts, producing ascending and descending branches. Small saccular terminals contacted a few dendrites in the tangential nucleus. In contrast, small saccular terminals contacted many dendrites and a few neuron cell bodies in the ventrolateral vestibular nucleus, vestibulocerebellar nucleus, and descending vestibular nuclei. Utricular fibers coursed through ventral parts of the central tangential nucleus before bifurcating into ascending and descending branches. In the tangential nucleus, utricular fibers formed a few large axosomatic terminals (spoon terminals) and a few small terminals on dendrites. In addition, small utricular terminals contacted numerous dendrites and a few neuron cell bodies in the ventrolateral, vestibulocerebellar, and descending vestibular nuclei. Thus, there was negligible overlap in the distribution of the otolith nerves, although each otolith afferent shared common regions with the canal afferents, previously shown, suggesting that some second-order vestibular neurons process convergent inputs from otolith and canal afferents. Taken together with previous results, the present findings identify discrete regions of the chick vestibular nuclei where second-order vestibular neurons likely process directly convergent otolith and canal inputs.


Vestibular Nuclei: A New Neural Stem Cell Niche?

  • Guillaume Rastoldo‎ et al.
  • Cells‎
  • 2022‎

We previously reported adult reactive neurogliogenesis in the deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline and the rodent model. Recently, we demonstrated that UVN induced a significant increase in a population of cells colocalizing the transcription factor sex determining region Y-box 2 (SOX2) and the glial fibrillary acidic protein (GFAP) three days after the lesion in the deafferented medial vestibular nucleus. These two markers expressed on the same cell population could indicate the presence of lesion-reactive multipotent neural stem cells in the vestibular nuclei. The aim of our study was to provide insight into the potential neurogenic niche status of the vestibular nuclei in physiological conditions by using specific markers of stem cells (Nestin, SOX2, GFAP), cell proliferation (BrdU) and neuronal differentiation (NeuN). The present study confirmed the presence of quiescent and activated adult neural stem cells generating some new neurons in the vestibular nuclei of control rats. These unique features provide evidence that the vestibular nuclei represent a novel NSC site for the generation of neurons and/or glia in the adult rodent under physiological conditions.


Changes in TNFα, NFκB and MnSOD protein in the vestibular nuclei after unilateral vestibular deafferentation.

  • Martine Liberge‎ et al.
  • Journal of neuroinflammation‎
  • 2010‎

Unilateral vestibular deafferentation results in strong microglial and astroglial activation in the vestibular nuclei (VN) that could be due to an inflammatory response. This study was aimed at determining if markers of inflammation are upregulated in the VN after chemical unilateral labyrinthectomy (UL) in the rat, and if the inflammatory response, if any, induces the expression of neuroprotective factors that could promote the plasticity mechanisms involved in the vestibular compensation process. The expressions of inflammatory and neuroprotective factors after chemical or mechanical UL were also compared to verify that the inflammatory response was not due to the toxicity of sodium arsanilate.


Conserved and divergent development of brainstem vestibular and auditory nuclei.

  • Marcela Lipovsek‎ et al.
  • eLife‎
  • 2018‎

Vestibular function was established early in vertebrates and has remained, for the most part, unchanged. In contrast, each group of tetrapods underwent independent evolutionary processes to solve the problem of hearing on land, resulting in a remarkable mixture of conserved, divergent and convergent features that define extant auditory systems. The vestibuloacoustic nuclei of the hindbrain develop from a highly conserved ground plan and provide an ideal framework on which to address the participation of developmental processes to the evolution of neuronal circuits. We employed an electroporation strategy to unravel the contribution of two dorsoventral and four axial lineages to the development of the chick hindbrain vestibular and auditory nuclei. We compare the chick developmental map with recently established genetic fate-maps of the developing mouse hindbrain. Overall, we find considerable conservation of developmental origin for the vestibular nuclei. In contrast, a comparative analysis of the developmental origin of hindbrain auditory structures echoes the complex evolutionary history of the auditory system. In particular, we find that the developmental origin of the chick auditory interaural time difference circuit supports its emergence from an ancient vestibular network, unrelated to the analogous mammalian counterpart.


Precerebellar and vestibular nuclei of the short-beaked echidna (Tachyglossus aculeatus).

  • K W S Ashwell‎ et al.
  • Brain structure & function‎
  • 2007‎

The monotremes are a unique group of living mammals, which diverged from the line leading to placental mammals at least 125 million years ago. We have examined the organization of pontine, inferior olivary, lateral reticular and vestibular nuclei in the brainstem of the short-beaked echidna (Tachyglossus aculeatus) to determine if the cyto- and chemoarchitecture of these nuclei are similar to that in placental mammals and marsupials. We have used Nissl staining in conjunction with enzyme-histochemistry for acetylcholinesterase, cytochrome oxidase and NADPH diaphorase as well as immunohistochemistry for non-phosphorylated neurofilament protein (SMI-32 antibody) and calcium binding proteins (parvalbumin, calbindin, calretinin). Homologies could be established between the arch shaped inferior olivary complex of the echidna and the principal, dorsal and medial accessory subdivisions of the therian inferior olivary complex. The pontine nuclei of the echidna included basilar and reticulotegmental components with similar cyto- and chemarchitectural features to therians and there were magnocellular and subtrigeminal components of the lateral reticular nucleus, also as seen in therians. Subdivisions and chemoarchitecture of the vestibular complex of the echidna were both similar to that region in rodents. In all three precerebellar nuclear groups studied and in the vestibular nucleus organization, the cyto- and chemoarchitecture of the echidna was very similar to that seen in therian mammals and no "primitive" or "reptilian" features were evident.


Anterograde tracing of projections from the dorsal raphe nucleus to the vestibular nuclei.

  • A L Halberstadt‎ et al.
  • Neuroscience‎
  • 2006‎

This study used the anterograde transport of biotinylated dextran amine (BDA) to identify the course and terminal distribution of projections from the dorsal raphe nucleus (DRN) to the vestibular nuclei in rats. After iontophoretic injection of BDA into the medial and lateral regions of DRN, anterogradely labeled fibers descend within the medial longitudinal fasciculus and the ventricular fiber plexus to terminate within two discrete regions of the vestibular nuclear complex. One terminal field was located primarily ipsilateral to the injection site and involved rostrodorsal aspects of the vestibular nuclei, including superior vestibular nucleus and rostral portions of the medial vestibular nucleus (MVN) and lateral vestibular nucleus (LVN). The other terminal field involved caudoventral aspects of both ipsilateral and contralateral MVN and LVN and was less heavily innervated. These findings confirm that the vestibular nuclei are targeted by a regionally-selective projection from the DRN. The segregation of DRN terminals into anatomically distinct fields indicates that the DRN-vestibular nucleus projections are organized to selectively modulate processing within specific functional domains of the vestibular nuclear complex. In particular, these terminal fields may be organized to modulate vestibular regions involved in eye movement-related velocity storage, coordination of vestibular and affective responses, and the bilateral coordination of horizontal eye movement reflexes.


Microglial Dynamics Modulate Vestibular Compensation in a Rodent Model of Vestibulopathy and Condition the Expression of Plasticity Mechanisms in the Deafferented Vestibular Nuclei.

  • Nada El Mahmoudi‎ et al.
  • Cells‎
  • 2022‎

Unilateral vestibular loss (UVL) induces a vestibular syndrome composed of posturo-locomotor, oculomotor, vegetative, and perceptivo-cognitive symptoms. With time, these functional deficits progressively disappear due to a phenomenon called vestibular compensation, known to be supported by the expression in the deafferented vestibular nuclei (VNs) of various adaptative plasticity mechanisms. UVL is known to induce a neuroinflammatory response within the VNs, thought to be caused by the structural alteration of primary vestibular afferents. The acute inflammatory response, expressed in the deafferented VNs was recently proven to be crucial for the expression of the endogenous plasticity supporting functional recovery. Neuroinflammation is supported by reactive microglial cells, known to have various phenotypes with adverse effects on brain tissue. Here, we used markers of pro-inflammatory and anti-inflammatory phenotypes of reactive microglia to study microglial dynamics following a unilateral vestibular neurectomy (UVN) in the adult rat. In addition, to highlight the role of acute inflammation in vestibular compensation and its underlying mechanisms, we enhanced the inflammatory state of the deafferented VNs using systemic injections of lipopolysaccharide (LPS) during the acute phase after a UVN. We observed that the UVN induced the expression of both M1 proinflammatory and M2 anti-inflammatory microglial phenotypes in the deafferented VNs. The acute LPS treatment exacerbated the inflammatory reaction and increased the M1 phenotype while decreasing M2 expression. These effects were associated with impaired postlesional plasticity in the deafferented VNs and exacerbated functional deficits. These results highlight the importance of a homeostatic inflammatory level in the expression of the adaptative plasticity mechanisms underlying vestibular compensation. Understanding the rules that govern neuroinflammation would provide therapeutic leads in neuropathologies associated with these processes.


Direct projections from the caudal vestibular nuclei to the ventrolateral medulla in the rat.

  • G R Holstein‎ et al.
  • Neuroscience‎
  • 2011‎

While the basic pathways mediating vestibulo-ocular, -spinal, and -collic reflexes have been described in detail, little is known about vestibular projections to central autonomic sites. Previous studies have primarily focused on projections from the caudal vestibular region to solitary, vagal and parabrachial nuclei, but have noted a sparse innervation of the ventrolateral medulla. Since a direct pathway from the vestibular nuclei to the rostral ventrolateral medulla would provide a morphological substrate for rapid modifications in blood pressure, heart rate and respiration with changes in posture and locomotion, the present study examined anatomical evidence for this pathway using anterograde and retrograde tract tracing and immunofluorescence detection in brainstem sections of the rat medulla. The results provide anatomical evidence for direct pathways from the caudal vestibular nuclear complex to the rostral and caudal ventrolateral medullary regions. The projections are conveyed by fine and highly varicose axons that ramify bilaterally, with greater terminal densities present ipsilateral to the injection site and more rostrally in the ventrolateral medulla. In the rostral ventrolateral medulla, these processes are highly branched and extremely varicose, primarily directed toward the somata and proximal dendrites of non-catecholaminergic neurons, with minor projections to the distal dendrites of catecholaminergic cells. In the caudal ventrolateral medulla, the axons of vestibular nucleus neurons are more modestly branched with fewer varicosities, and their endings are contiguous with both the perikarya and dendrites of catecholamine-containing neurons. These data suggest that vestibular neurons preferentially target the rostral ventrolateral medulla, and can thereby provide a morphological basis for a short latency vestibulo-sympathetic pathway.


Efferent connections of the vestibular nuclei in the rat: a neuromorphological study using PHA-L.

  • Clara Matesz‎ et al.
  • Brain research bulletin‎

The efferent connections of the superior, medial, lateral, and descending vestibular nuclei were studied with anterograde tracing methods in rats. The following areas of termination could be discerned: (1) In the diencephalon, labeled terminals were detected in the thalamus. (2) In the mesencephalon, the red nucleus and motor nuclei involved in eye movements were richly supplied by the vestibular nuclei. (3) In the rhombencephalon, extensive intrinsic connections of all vestibular nuclei were demonstrated. Strong commissural connections were found among the medial, superior, and descending vestibular nuclei. The inferior olive received labeled fibers exclusively from the lateral vestibular nuclei. Individual differences were demonstrated in the termination areas in the reticular formation. (4) In the spinal cord, most of the descending vestibular fibers were found in the ipsilateral anterior funiculus.


Changes in D-serine levels and localization during postnatal development of the rat vestibular nuclei.

  • Julien Puyal‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

The patterns of development of the vestibular nuclei (VN) and their main connections involving glutamate neurotransmission offer a good model for studying the function of the glial-derived neuromodulator D-serine in synaptic plasticity. In this study we show that D-serine is present in the VN and we analyzed its distribution and the levels of expression of serine racemase and D-amino acid oxidase (D-AAO) at different stages of postnatal (P) development. From birth to P21, high levels of D-serine were detected in glial cells and processes in all parts of the VN. This period corresponded to high expression of serine racemase and low expression of D-AAO. On the other hand, in the mature VN D-serine displayed very low levels and was mainly localized in neuronal cell bodies and dendrites. This drop of D-serine in adult stages corresponded to an increasing expression of D-AAO at mature stages. High levels of glial D-serine during the first 3 weeks of postnatal development correspond to an intense period of plasticity and synaptogenesis and maturation of VN afferents, suggesting that D-serine could be involved in these phenomena. These results demonstrate for the first time that changes in D-serine levels and distribution occur during postnatal development in the central nervous system. The strong decrease of D-serine levels and the glial-to-neuronal switch suggests that D-serine may have distinct functional roles depending on the developmental stage of the vestibular network.


Low level of swiprosin-1/EFhd2 in vestibular nuclei of spontaneously hypersensitive motion sickness mice.

  • Zhi-Bin Wang‎ et al.
  • Scientific reports‎
  • 2017‎

Susceptibility to motion sickness (MS) varies considerably among humans. However, the cause of such variation is unclear. Here, we used a classical genetic approach to obtain mouse strains highly sensitive and resistant to MS (SMS and RMS). Proteomics analysis revealed substantially lower swiprosin-1 expression in SMS mouse brains. Inducing MS via rotary stimulation decreased swiprosin-1 in the mouse brains. Swiprosin-1 knockout mice were much more sensitive to motion disturbance. Immunohistochemistry revealed strong swiprosin-1 expression in the vestibular nuclei (VN). Over-expressing swiprosin-1 in the VN of SMS mice decreased MS susceptibility. Down-regulating swiprosin-1 in the VN of RMS mice by RNAi increased MS susceptibility. Additional in vivo experiments revealed decreased swiprosin-1 expression by glutamate via the NMDA receptor. Glutamate increased neuronal excitability in SMS or swiprosin-1 knockout mice more prominently than in RMS or wild-type mice. These results indicate that swiprosin-1 in the VN is a critical determinant of the susceptibility to MS.


Projections from the vestibular nuclei and nucleus prepositus hypoglossi to dorsal raphe nucleus in rats.

  • Bruna Cuccurazzu‎ et al.
  • Neuroscience letters‎
  • 2008‎

The serotonergic system regulates processing in components of the vestibular nuclear complex, including the medial vestibular nucleus (MVe) and nucleus prepositus hypoglossi (PH). Recent studies using anterograde and retrograde tracers have shown that vestibular nuclei are targeted by regionally selective projections from the serotonergic dorsal raphe nucleus. The objective of the present investigation was to determine whether the DRN is targeted by projections from the vestibular nuclear complex in rats, using the anterograde tracer biotinylated dextran amine (BDA). After injection of BDA into PH or the caudal parvicellular division of MVe, labeled fibers and terminals were observed in the ventromedial and lateral subdivisions of DRN. These findings indicate that projections from the vestibular nuclei and PH are organized to modulate processing within specific functional domains of the DRN.


Plasticity of histamine H3 receptor expression and binding in the vestibular nuclei after labyrinthectomy in rat.

  • Adrian F Lozada‎ et al.
  • BMC neuroscience‎
  • 2004‎

In rat, deafferentation of one labyrinth (unilateral labyrinthectomy) results in a characteristic syndrome of ocular and motor postural disorders (e.g., barrel rotation, circling behavior, and spontaneous nystagmus). Behavioral recovery (e.g., diminished symptoms), encompassing 1 week after unilateral labyrinthectomy, has been termed vestibular compensation. Evidence suggesting that the histamine H3 receptor plays a key role in vestibular compensation comes from studies indicating that betahistine, a histamine-like drug that acts as both a partial histamine H1 receptor agonist and an H3 receptor antagonist, can accelerate the process of vestibular compensation.


Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control.

  • B J Jian‎ et al.
  • Brain research‎
  • 2005‎

Prior experiments have shown that a region of the medial and inferior vestibular nuclei contributes to cardiovascular and respiratory regulation. In addition to labyrinthine inputs, the majority of neurons in this region of the vestibular nuclei receive signals from the skin, muscle, and viscera, although the pathways conveying these nonlabyrinthine inputs to the vestibular nucleus neurons are unknown. To gain further insight into the afferent pathways to this functionally distinct subdivision of the vestibular complex, we combined monosynaptic mapping with viral transneuronal tracing in the ferret. First order afferent projections were defined by retrograde transport of the beta-subunit of cholera toxin (CTbeta), and the extended polysynaptic circuitry was defined in the same animals by injection of a recombinant of pseudorabies virus Bartha (PRV) into the contralateral vestibular nuclei. Neurons containing CTbeta or infected by retrograde transneuronal transport and replication of PRV were distributed throughout the spinal cord, but were 10 times more prevalent in the cervical cord than the lumbar cord. The labeled spinal neurons were most commonly observed in Rexed's laminae IV-VI and the dorsal portions of laminae VII-VIII. Both the CTbeta and PRV injections also resulted in labeling of neurons in all four vestibular nuclei, the prepositus hypoglossi, the reticular formation, the inferior olivary nucleus, the medullary raphe nuclei, the spinal and principal trigeminal nuclei, the facial nucleus, and the lateral reticular nucleus. Following survival times >/=3 days, PRV-infected neurons were additionally present in nucleus solitarius and the gracile and cuneate nuclei. These data show that an anatomical substrate is present for somatosensory and visceral inputs to influence the activity of cells in the autonomic region of the vestibular nuclei and suggest that these signals are primarily transmitted through brainstem relay neurons.


Otolith stimulation induces c-Fos expression in vestibular and precerebellar nuclei in cats and squirrel monkeys.

  • Joan S Baizer‎ et al.
  • Brain research‎
  • 2010‎

Vestibular information is critical for the control of balance, posture, and eye movements. Signals from the receptors, the semicircular canals and otoliths, are carried by the eighth nerve and distributed to the four nuclei of the vestibular nuclear complex, the VNC. However, anatomical and physiological data suggest that many additional brainstem nuclei are engaged in the processing of vestibular signals and generation of motor responses. To assess the role of these structures in vestibular functions, we have used the expression of the immediate early gene c-Fos as a marker for neurons activated by stimulation of the otoliths or the semicircular canals. Excitation of the otolith organs resulted in widespread c-Fos expression in the VNC, but also in other nuclei, including the external cuneate nucleus, the postpyramidal nucleus of the raphé, the nucleus prepositus hypoglossi, the subtrigeminal nucleus, the pontine nuclei, the dorsal tegmental nucleus, the locus coeruleus, and the reticular formation. Rotations that excited the semicircular canals were much less effective in inducing c-Fos expression. The large number of brainstem nuclei that showed c-Fos expression may reflect the multiple functions of the vestibular system. Some of these neurons may be involved in sensory processing of the vestibular signals, while others provide input to the vestibulo-ocular, vestibulocollic, and vestibulospinal reflexes or mediate changes in autonomic function. The data show that otolith stimulation engages brainstem structures both within and outside of the VNC, many of which project to the cerebellum.


Differential projections from the vestibular nuclei to the flocculus and uvula-nodulus in pigeons (Columba livia).

  • Janelle M P Pakan‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

The pigeon vestibulocerebellum is divided into two regions based on the responses of Purkinje cells to optic flow stimuli: the uvula-nodulus responds best to self-translation, and the flocculus responds best to self-rotation. We used retrograde tracing to determine whether the flocculus and uvula-nodulus receive differential mossy fiber input from the vestibular and cerebellar nuclei. From retrograde injections into the both the flocculus and uvula-nodulus, numerous cells were found in the superior vestibular nucleus (VeS), the cerebellovestibular process (pcv), the descending vestibular nucleus (VeD), and the medial vestibular nucleus (VeM). Less labeling was found in the prepositus hypoglossi, the cerebellar nuclei, the dorsolateral vestibular nucleus, and the lateral vestibular nucleus, pars ventralis. In the VeS, the differential input to the flocculus and uvula-nodulus was distinct: cells were localized to the medial and lateral regions, respectively. The same pattern was observed in the VeD, although there was considerable overlap. In the VeM, the majority of cells labeled from the flocculus were in rostral margins on the ipsilateral side, whereas labeling from uvula-nodulus injections was distributed bilaterally throughout the VeM. Finally, from injections in the flocculus but not the uvula-nodulus, moderate labeling was observed in a paramedian area, adjacent to the medial longitudinal fasciculus. In summary, there were clear differences with respect to the projections from the vestibular nuclei to functionally distinct parts of the vestibulocerebellum. Generally speaking, the mossy fibers to the flocculus and uvula-nodulus arise from regions of the vestibular nuclei that receive input from the semicircular canals and otolith organs, respectively.


Melanocortinergic circuits from medial vestibular nuclei to the kidney defined by transneuronal transport of pseudorabies virus.

  • Dan Shang‎ et al.
  • International journal of clinical and experimental pathology‎
  • 2015‎

This study was designed to assess whether MC4R signaling existed in vestibular nuclei modulated the activity of kidney by a virally mediated transsynaptic tracing study. Pseudorabies virus (PRV)-614 was injected into the kidney in adult male MC4R-green fluorescent protein (GFP) transgenic mice (n = 5). After a survival time of 5 days, the mice were assigned to humanely sacrifice, and the brainstem were removed and sectioned, and processed for PRV-614 visualization. The neurochemical phenotype of MC4R-GFP-positive neurons was identified using fluorescence immunocytochemical labeling. PRV-614/MC4R-GFP dual labeled neurons were detected in medial vestibular nuclei. Our findings support the hypothesis that there exist melanocortinergic circuits from medial vestibular nuclei to the kidney.


Whole-brain monosynaptic inputs and outputs of glutamatergic neurons of the vestibular nuclei complex in mice.

  • Xunbei Shi‎ et al.
  • Hearing research‎
  • 2021‎

Vestibular nuclei complex (VN) glutamatergic neurons play a critical role in the multisensory and multimodal processing. The dysfunction of VN leads to a series of vestibular concurrent symptoms, such as disequilibrium, spatial disorientation, autonomic disorders and even emotion disorders. However, the reciprocal neural connectivity in the whole brain of VN glutamatergic neurons was incompletely understood. Here, we employed a cell-type-specific, cre-dependent, modified virus vector to retrogradely and anterogradely trace VN glutamatergic neurons in the VGLUT2-IRES-Cre mouse line. We identified and analyzed statistically the afferents and efferents of VN glutamatergic neurons in the whole brain, and also reconstructed monosynaptic inputs distribution of VN glutamatergic neurons at the three-dimensional level with the combination of a fluorescence micro-optical sectioning tomography system (fMOST). We found that VN glutamatergic neurons primarily received afferents from 57 nuclei and send efferents to 59 nuclei in the whole brain, intensively located in the brainstem and cerebellum. Projections from nuclei in the cerebellum targeting VN glutamatergic neurons mainly performed the balance control - the principal function of the vestibular system. In addition, VN glutamatergic neurons sent projections to oculomotor nucleus, trochlear nucleus and abducens nucleus dominating the eye movement. Except for the maintenance of balance, VN glutamatergic neurons were also directly connected with other functional regions, such as sleep-wake state (locus coeruleus, dorsal raphe nucleus, and laterodorsal tegmental nucleus, gigantocellular reticular nucleus, lateral paragigantocellular nucleus, periaqueductal gray, subcoeruleus nucleus, parvicellular reticular nucleus, paramedian raphe nucleus), and emotional regulation (locus coeruleus and dorsal raphe nucleus). Hence, this study revealed a comprehensive whole-brain neural connectivity of VN glutamatergic neurons and provided with a neuroanatomic foundation to further study on central vestibular circuits.


Expression of glycine receptors and gephyrin in rat medial vestibular nuclei and flocculi following unilateral labyrinthectomy.

  • Wen Zhou‎ et al.
  • International journal of molecular medicine‎
  • 2016‎

The medial vestibular nucleus (MVN) and the cerebellar flocculus have been known to be the key areas involved in vestibular compensation (VC) following unilateral labyrinthectomy (UL). In this study, we examined the role of gephyrin and glycine receptor (GlyR) in VC using Sprague-Dawley rats, in an aim to gain deeper insight into the mechanisms responsible for VC. The expression of the α1 and β subunits of GlyR and gephyrin was immunohistochemically localized in rat MVN and flocculi. The mRNA and protein expression of GlyR (α1 and β subunits) and gephyrin was quantitatively determined by RT-qPCR and western blot analysis at 8 h, and at 1, 3 and 7 days following UL. It was found that in the ipsilateral MVN, the mRNA and protein expression of the β subunit of GlyR was significantly increased in comparison to the sham-operated (P<0.01) rats, and in comparison to the contralateral side (P<0.01) at 8 h following UL. In the ipsilateral flocculi, GlyR β protein expression was significantly elevated (P<0.01 for all), as compared to the sham-operated rats at 8 h, and at 1 and 3 days and to the contralateral side 8 h, 1 and 3 days following UL. No significant differences were observed in the mRNA and protein expression of GlyR α1 and gephyrin in the MVN or flocculi between the two sides (ipsilateral and contralateral) in the UL group, and between the sham-operated group and the UL group at any time point. The findings of our study thus suggest that GlyR plays a major role in the recovery of the resting discharge of the deafferented MVN neurons in the central vestibular system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: