Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 50 papers

Vasodilator agents improve hemodialysis vascular access patency: A population-based study from Korea.

  • Do Hyoung Kim‎ et al.
  • Medicine‎
  • 2021‎

Vascular access (VA) failure is an important problem for patients undergoing hemodialysis, and maintaining VA patency is challenging. In this study, we used a nationwide database to investigate the effects of nitrate, as a vasodilator, on VA failure in hemodialysis patients.We investigated the Korean insurance claims data of hemodialysis patients who underwent angioplasty for VA failure between January 2012 and December 2017. The patients were divided into 2 groups: those not receiving vasodilator therapy (controls) and those receiving any vasodilator administration (vasodilator treatment, VDT). The primary endpoint was VA primary patency, defined as the time between arteriovenous dialysis access creation and the first percutaneous transluminal angioplasty (PTA).During the study period, a total of 6350 patients were recruited, 409 (6.4%) patients assigned to the VDT group and 5941 (93.6%) controls. PTA was performed in 998 patients (15.7%), including 8 in the VDT group and 990 controls. The VA site PTA rate was significantly lower in the VDT group (2.0%) than in the control group (16.7%, P < .001). In the subgroup analysis, the patency rates associated with the different vasodilators were similar (P = .736). All vasodilators, except molsidomine, improved the patency rate by approximately 20%.In this large national database study, vasodilator administration was associated with higher VA primary patency, compared with controls, in hemodialysis patients. VDT may have a beneficial effect on maintaining VA patency in patients undergoing hemodialysis.


Different vasodilator responses of human arms and legs.

  • Sean C Newcomer‎ et al.
  • The Journal of physiology‎
  • 2004‎

Forearm vascular responses to intra-arterial infusions of endothelium-dependent and -independent vasodilators have been thoroughly characterized in humans. While the forearm is a well-established experimental model for studying human vascular function, it is of limited consequence to systemic cardiovascular control owing to its small muscle mass and blood flow requirements. In the present study we determined whether these responses could be generalized to the leg. Based upon blood pressure differences between the leg and arm during upright posture, we hypothesized that the responsiveness to endothelium-dependent vasodilators would be greater in the forearm than the leg. Brachial and femoral artery blood flow (Q, ultrasound Doppler) at rest and during intra-arterial infusions of endothelium-dependent (acetylcholine and substance P) and -independent (sodium nitroprusside) vasodilators were measured in eight healthy men (22-27 years old). Resting blood flows in the forearm before infusion of acetylcholine, substance P or sodium nitroprusside were 25 +/- 4, 30 +/- 7 and 29 +/- 5 ml min(-1), respectively, and in the leg were 370 +/- 32, 409 +/- 62 and 330 +/- 30 ml min(-1), respectively. At the highest infusion rate of acetylcholine (16 microg (100 ml tissue)(-1) min(-1)) there was a greater (P < 0.05) increase in Q to the forearm (1864 +/- 476%) than to the leg (569 +/- 86%). Similarly, at the highest infusion rate of substance P (125 pg (100 ml tissue)(-1) min(-1)) there was a greater (P < 0.05) increase in Q to the forearm (911 +/- 286%) than to the leg (243 +/- 58%). The responses to sodium nitroprusside (1 microg (100 ml tissue)(-1) min(-1)) were also greater (P < 0.05) in the forearm (925 +/- 164%) than in the leg (326 +/- 65%). These data indicate that vascular responses to both endothelium-dependent and -independent vasodilator agents are blunted in the leg compared to the forearm.


Vasodilator oxyfedrine inhibits aldehyde metabolism and thereby sensitizes cancer cells to xCT-targeted therapy.

  • Yuji Otsuki‎ et al.
  • Cancer science‎
  • 2020‎

The major cellular antioxidant glutathione (GSH) protects cancer cells from oxidative damage that can lead to the induction of ferroptosis, an iron-dependent form of cell death triggered by the aberrant accumulation of lipid peroxides. Inhibitors of the cystine-glutamate antiporter subunit xCT, which mediates the uptake of extracellular cystine and thereby promotes GSH synthesis, are thus potential anticancer agents. However, the efficacy of xCT-targeted therapy has been found to be diminished by metabolic reprogramming that affects redox status in cancer cells. Identification of drugs for combination with xCT inhibitors that are able to overcome resistance to xCT-targeted therapy might thus provide the basis for effective cancer treatment. We have now identified the vasodilator oxyfedrine (OXY) as a sensitizer of cancer cells to GSH-depleting agents including the xCT inhibitor sulfasalazine (SSZ). Oxyfedrine contains a structural motif required for covalent inhibition of aldehyde dehydrogenase (ALDH) enzymes, and combined treatment with OXY and SSZ was found to induce accumulation of the cytotoxic aldehyde 4-hydroxynonenal and cell death in SSZ-resistant cancer cells both in vitro and in vivo. Microarray analysis of tumor xenograft tissue showed cyclooxygenase-2 expression as a potential biomarker for the efficacy of such combination therapy. Furthermore, OXY-mediated ALDH inhibition was found to sensitize cancer cells to GSH depletion induced by radiation therapy in vitro. Our findings thus establish a rationale for repurposing of OXY as a sensitizing drug for cancer treatment with agents that induce GSH depletion.


Novel Labdane Diterpenes-Based Synthetic Derivatives: Identification of a Bifunctional Vasodilator That Inhibits CaV1.2 and Stimulates KCa1.1 Channels.

  • Gabriele Carullo‎ et al.
  • Marine drugs‎
  • 2022‎

Sesquiterpenes such as leucodin and the labdane-type diterpene manool are natural compounds endowed with remarkably in vitro vasorelaxant and in vivo hypotensive activities. Given their structural similarity with the sesquiterpene lactone (+)-sclareolide, this molecule was selected as a scaffold to develop novel vasoactive agents. Functional, electrophysiology, and molecular dynamics studies were performed. The opening of the five-member lactone ring in the (+)-sclareolide provided a series of labdane-based small molecules, promoting a significant in vitro vasorelaxant effect. Electrophysiology data identified 7 as a CaV1.2 channel blocker and a KCa1.1 channel stimulator. These activities were also confirmed in the intact vascular tissue. The significant antagonism caused by the CaV1.2 channel agonist Bay K 8644 suggested that 7 might interact with the dihydropyridine binding site. Docking and molecular dynamic simulations provided the molecular basis of the CaV1.2 channel blockade and KCa1.1 channel stimulation produced by 7. Finally, 7 reduced coronary perfusion pressure and heart rate, while prolonging conduction and refractoriness of the atrioventricular node, likely because of its Ca2+ antagonism. Taken together, these data indicate that the labdane scaffold represents a valuable starting point for the development of new vasorelaxant agents endowed with negative chronotropic properties and targeting key pathways involved in the pathophysiology of hypertension and ischemic cardiomyopathy.


Characterization of the vasodilator properties of peroxynitrite on rat pulmonary artery: role of poly (adenosine 5'-diphosphoribose) synthase.

  • F Chabot‎ et al.
  • British journal of pharmacology‎
  • 1997‎

1. The pulmonary vasculature is constantly exposed to oxygen and reactive oxygen species such as nitric oxide (NO) and superoxide anions which can combine at a near diffusion limited rate, to form the powerful, oxidant, peroxynitrite (ONOO-). When formed in large amounts, ONOO- is thought to contribute to tissue injury and vascular dysfunction seen in diseases such as the acute respiratory distress syndrome (ARDS) and septic shock. Recent studies have shown that ONOO- can cause vasodilatation and at higher concentrations can activate poly (adenosine 5'-diphosphoribose) synthase (PARS) leading to consumption of nicotinamide adenine dinucleotide (NAD+) and adenosine 5'-triphosphate (ATP). As the lung represents a prime site for ONOO- formation, we characterized its effects on pulmonary vascular tone and on endothelial function. In addition, we have assessed the role of PARS in producing the vasoactive properties of ONOO- on pulmonary artery rings. 2. Isolated pulmonary artery rings from rats were mounted in organ baths containing warmed and gassed (95% O2: 5% CO2) Krebs buffer. Force was measured with isometric force transducers. After equilibration, ONOO- (10 nM-100 microM) was added in a cumulative manner. In separate experiments designed to assess any vasodilator properties of ONOO-, tissues were pre-contracted with the thromboxane mimetic U46619 (1 microM). Once a stable base-line was achieved, ONOO- was added in a cumulative fashion. ONOO- had no significant effect on resting pulmonary artery tone but caused concentration-dependent relaxations of pre-contracted vessels in the range 1 microM to 100 microM. In some experiments the effects of freshly prepared ONOO- solutions were compared with those allowed to decay at 4 degrees C for 2 days. 3. In some experiments either vehicle or ONOO- (1, 10 or 100 microM) was added for 15 min before U46619 (1 microM). Concentration-response curves to the endothelium-dependent vasodilator, acetylcholine (10 nM-100 microM) were then constructed. In these experiments, ONOO- (1 microM or 10 microM) had no effect on the actions of acetylcholine. However, at the highest concentration tested (100 microM), ONOO- increased acetylcholine-induced relaxations. 4. The vasodilator actions of ONOO- were unaffected by the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 100 microM) or by removal of superoxide anions with superoxide dismutase (SOD) (30 units ml-1). However, the relaxations induced by ONOO- were significantly inhibited by the PARS inhibitor, 3-aminobenzamide (10 microM). In contrast to its effects on ONOO-, 3-aminobenzamide had no effect on the relaxation caused by acetylcholine or sodium nitrite, but actually increased that induced by sodium nitroprusside. 5. These data show that ONOO- causes vasodilatation of rat pulmonary arteries, probably via activation of PARS. Moreover, at concentrations where relaxation was achieved, ONOO- did not affect the ability of pulmonary artery rings to relax to acetylcholine. We propose that ONOO-, but not endothelially derived NO, activates PARS resulting in the rapid depletion of ATP and a consequent reduction in contraction as well as other active processes of vascular smooth muscle. The finding that 3-aminobenzamide inhibited the actions of ONOO- but not acetylcholine, suggests that NO and ONOO- cause relaxation by independent mechanisms. It has been suggested that ONOO- is responsible for the vascular hyporesponsiveness to constrictor agents seen in experimental sepsis. This observation together with our current finding, that 3-aminobenzamide inhibits the relaxation induced by ONOO- but not by acetylcholine, suggests that inhibitors of PARS may reduce the persistent hypotension seen in sepsis without affecting the actions of endothelium-derived NO. Thus, the use of PARS inhibitors may represent a novel therapeutic approach to the treatment of septic shock.


Role of aminophylline in refractory heart failure: a comparison to the vasodilator sodium nitroprusside, the old and the new.

  • R DiBianco‎ et al.
  • Clinical cardiology‎
  • 1980‎

Aminophylline [(theophylline ethylene diamine (TED)] reportedly improved cardiac hemodynamics by lowering vascular resistances and increasing contractility. TED as used clinically has not been compared to the vasodilator sodium nitroprusside (NP). To assess the relative hemodynamic effects of these two commonly used agents, the following comparison was made. Ten patients with congestive cardiomyopathy in chronic refractory heart failure [New York Heart Association (NYHA) class IV] were studied. All patients demonstrated cardiomegaly by chest x ray and echocardiography (LVd = 6.3 +/- 0.7 cm) and markedly abnormal hemodynamics during baseline observations (see Table I). Hemodynamic measurements at baseline were compared after TED infusion (mean blood level = 16 +/- 12 micrograms/m/TED) and during intravenous NP. No significant changes in heart rate occurred during either therapeutic intervention; a fall in mean arterial pressure of 10 mmHg (p < 0.01) was observed during NP therapy; atrioventricular (AV) block with ventricular fibrillation was successfully treated in one patient after TED. Theophylline ethylene diamine demonstrated no detectable cardiac hemodynamic effects 60--90 min post infusion despite proven blood levels, whereas NP exhibited distinctly beneficial effects in this patient group. Previous studies demonstrating improved hemodynamics occurring with TED have been limited to the time of infusion or within the following 40 min, a time when TED blood levels are maximum and therefore closest to toxicity. The results of this study suggest that TED demonstrates no beneficial hemodynamic effects in refractory heart failure as early as 1 h after infusion despite blood levels in the therapeutic range.


Vasodilator-stimulated phosphoprotein (VASP) is not a major mediator of platelet aggregation, thrombogenesis, haemostasis, and antiplatelet effect of prasugrel in rats.

  • Yusuke Ito‎ et al.
  • Scientific reports‎
  • 2018‎

Vasodilator-stimulated phosphoprotein (VASP) is a member of actin regulatory proteins implicated in platelet adhesion. In addition, phosphorylation of VASP is utilised for the assessment of platelet reactivity in patients treated with P2Y12 receptor antagonists, a class of antiplatelet agents. However, the role of VASP in platelet aggregation, thrombogenesis, haemostasis, and the antiplatelet effect of P2Y12 receptor antagonists remains unclear. We investigated these effects using heterozygous and homozygous VASP knockout rats generated with a CRISPR/Cas9 system. Baseline characteristics, such as haematology and other biochemical parameters, were comparable among the genotypes. In vitro platelet aggregation stimulated by adenosine diphosphate (ADP) or collagen, P-selectin expression of rat platelets treated with ADP, and in vivo thrombocytopenia induced by collagen were also comparable among the genotypes. In addition, in vivo thrombogenesis in a ferric chloride-induced arterial thrombosis model and bleeding time were also comparable among the genotypes. Furthermore, the in vitro antiplatelet effect of prasugrel, a third-generation P2Y12 receptor antagonist, was unaffected by VASP knockout. Although phosphorylated VASP is still an important surrogate marker specific for P2Y12 antagonists, our findings demonstrate that VASP is not a major mediator of platelet aggregation, thrombogenesis, haemostasis, and the antiplatelet effect of prasugrel in rats.


Early Renal Vasodilator and Hypotensive Action of Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Receptor Blocker (AAA) in Spontaneously Hypertensive Rats.

  • Agnieszka Walkowska‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Cytochrome P450 (CYP-450) metabolites of arachidonic acid: epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) have established role in regulation of blood pressure (BP) and kidney function. EETs deficiency and increased renal formation of 20-HETE contribute to hypertension in spontaneously hypertensive rats (SHR). We explored the effects of 14,15-EET analog (EET-A) and of 20-HETE receptor blocker (AAA) on BP and kidney function in this model. In anesthetized SHR the responses were determined of mean arterial blood pressure (MABP), total renal (RBF), and cortical (CBF) and inner-medullary blood flows, glomerular filtration rate and renal excretion, to EET-A, 5 mg/kg, infused i.v. for 1 h to rats untreated or after blockade of endogenous EETs degradation with an inhibitor (c-AUCB) of soluble epoxide hydrolase. Also examined were the responses to AAA (10 mg/kg/h), given alone or together with EET-A. EET-A significantly increased RBF and CBF (+30% and 26%, respectively), seen already within first 30 min of infusion. The greatest increases in RBF and CBF (by about 40%) were seen after AAA, similar when given alone or combined with EET-A. MABP decreased after EET-A or AAA but not significantly after the combination thereof. In all groups, RBF, and CBF increases preceded the decrease in MABP. We found that in SHR both EET-A and AAA induced renal vasodilation but, unexpectedly, no additive effect was seen. We suggest that both agents have a definite therapeutic potential and deserve further experimental and clinical testing aimed at introduction of novel antihypertensive therapy.


Vasoactive pharmacologic therapy in cardiogenic shock: a critical review.

  • Rasha Kaddoura‎ et al.
  • Journal of drug assessment‎
  • 2021‎

Cardiogenic shock (CS) is an acute complex condition leading to morbidity and mortality. Vasoactive medications, such as vasopressors and inotropes are considered the cornerstone of pharmacological treatment of CS to improve end-organ perfusion by increasing cardiac output (CO) and blood pressure (BP), thus preventing multiorgan failure.


Functional vascular changes of the kidney during pregnancy in animals: a systematic review and meta-analysis.

  • Joris van Drongelen‎ et al.
  • PloS one‎
  • 2014‎

Renal vascular responses to pregnancy have frequently been studied, by investigating renal vascular resistance (RVR), renal flow, glomerular filtration rate (GFR), and renal artery responses to stimuli. Nonetheless, several questions remain: 1. Which vasodilator pathways are activated and to what extent do they affect RVR, renal flow and GFR across species, strains and gestational ages, 2. Are these changes dependent on renal artery adaptation, 3. At which cellular level does pregnancy affect the involved pathways? In an attempt to answer the questions raised, we performed a systematic review and meta-analysis on animal data. We included 37 studies (116 responses). At mid-gestation, RVR and GFR change to a similar degree across species and strains, accompanied by variable change in renal flow. At least in rats, changes depend on NO activation. At late gestation, changes in RVR, renal flow and GFR vary between species and strains. In rats, these changes are effectuated by sympathetic stimulation. Overall, renal artery responsiveness to stimuli is unaffected by pregnancy, except for Sprague Dawley rats in which pregnancy enhances renal artery vascular compliance and reduces renal artery myogenic reactivity. Our meta-analysis shows that: 1. Pregnancy changes RVR, renal flow and GFR dependent on NO-activation and sympathetic de-activation, but adjustments are different among species, strains and gestational ages; 2. These changes do not depend on adaptation of renal artery responsiveness; 3. It remains unknown at which cellular level pregnancy affects the pathways. Our meta-analysis suggests that renal changes during pregnancy in animals are qualitatively similar, even in comparison to humans, but quantitatively different.


Searching for novel hydrogen sulfide donors: The vascular effects of two thiourea derivatives.

  • Valentina Citi‎ et al.
  • Pharmacological research‎
  • 2020‎

The gasotransmitter hydrogen sulfide (H2S) is involved in the regulation of the vascular tone and an impairment of its endogenous production may play a role in hypertension. Thus, the administration of exogenous H2S may be a possible novel and effective strategy to control blood pressure. Some natural and synthetic sulfur compounds are suitable H2S-donors, exhibiting long-lasting H2S release; however, novel H2S-releasing agents are needed to improve the pharmacological armamentarium for the treatment of cardiovascular diseases. For this purpose, N-phenylthiourea (PTU) and N,N'-diphenylthiourea (DPTU) compounds have been investigated as potential H2S-donors. The thioureas showed long-lasting H2S donation in cell free environment and in human aortic smooth muscle cells (HASMCs). In HASMCs, DPTU caused membrane hyperpolarization, mediated by activation of KATP and Kv7 potassium channels. The thiourea derivatives promoted vasodilation in rat aortic rings, which was abolished by KATP and Kv7 blockers. The vasorelaxing effects were also observed in angiotensin II-constricted coronary vessels. In conclusion, thiourea represents an original H2S-donor functional group, which releases H2S with slow and long lasting kinetic, and promotes typical H2S-mediated vascular effects. Such a moiety will be extremely useful for developing original cardiovascular drugs and new chemical tools for investigating the pharmacological roles of H2S.


Early termination of cardiovascular trials as a consequence of poor accrual: analysis of ClinicalTrials.gov 2006-2015.

  • Ileana Baldi‎ et al.
  • BMJ open‎
  • 2017‎

To present a snapshot of experimental cardiovascular research with a focus on geographical and temporal patterns of early termination due to poor accrual.


High salt intake increases blood pressure in normal rats: putative role of 20-HETE and no evidence on changes in renal vascular reactivity.

  • A Walkowska‎ et al.
  • Kidney & blood pressure research‎
  • 2015‎

Background/Aims . High salt (HS) intake may elevate blood pressure (BP), also in animals without genetic salt sensitivity. The development of salt-dependent hypertension could be mediated by endogenous vasoactive agents; here we examined the role of vasodilator epoxyeicosatrienoic acids (EETs) and vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE).


Inhibition of ferrochelatase impairs vascular eNOS/NO and sGC/cGMP signaling.

  • Bin Zhang‎ et al.
  • PloS one‎
  • 2018‎

Ferrochelatase (FECH) is an enzyme necessary for heme synthesis, which is essential for maintaining normal functions of endothelial nitric oxide synthase (eNOS) and soluble guanylyl cyclase (sGC). We tested the hypothesis that inhibition of vascular FECH to attenuate heme synthesis downregulates eNOS and sGC expression, resulting in impaired NO/cGMP-dependent relaxation. To this end, isolated bovine coronary arteries (BCAs) were in vitro incubated without (as controls) or with N-methyl protoporphyrin (NMPP; 10(-5)-10(-7)M; a selective FECH antagonist) for 24 and 72 hours respectively. Tissue FECH activity, heme, nitrite/NO and superoxide levels were sequentially measured. Protein expression of FECH, eNOS and sGC was detected by western blot analysis. Vascular responses to various vasoactive agents were evaluated via isometric tension studies. Treatment of BCAs with NMPP initiated a time- and dose-dependent attenuation of FECH activity without changes in its protein expression, followed by significant reduction in the heme level. Moreover, ACh-induced relaxation and ACh-stimulated release of NO were significant reduced, associated with suppression of eNOS protein expression in NMPP-treated groups. Decreased relaxation to NO donor spermine-NONOate reached the statistical significance in BCAs incubated with NMPP for 72 hours, concomitantly with downregulation of sGCβ1 expression that was independent of heat shock protein 90 (HSP90), nor did it significantly affect BCA relaxation caused by BAY 58-2667 that activates sGC in the heme-deficiency. Neither vascular responses to non-NO/sGC-mediators nor production of superoxide was affected by NMPP-treatment. In conclusion, deletion of vascular heme production via inhibiting FECH elicits downregulation of eNOS and sGC expression, leading to an impaired NO-mediated relaxation in an oxidative stress-independent manner.


Cardiovascular magnetic resonance stress and rest T1-mapping using regadenoson for detection of ischemic heart disease compared to healthy controls.

  • Matthew K Burrage‎ et al.
  • International journal of cardiology‎
  • 2021‎

Adenosine stress T1-mapping on cardiovascular magnetic resonance (CMR) can differentiate between normal, ischemic, infarcted, and remote myocardial tissue classes without the need for contrast agents. Regadenoson, a selective coronary vasodilator, is often used in stress perfusion imaging when adenosine is contra-indicated, and has advantages in ease of administration, safety profile, and clinical workflow. We aimed to characterize the regadenoson stress T1-mapping response in healthy individuals, and to investigate its ability to differentiate between myocardial tissue classes in patients with coronary artery disease (CAD).


Effects of Caffeine on Myocardial Blood Flow: A Systematic Review.

  • Randy van Dijk‎ et al.
  • Nutrients‎
  • 2018‎

Caffeine is one of the most widely consumed stimulants worldwide. It is a well-recognized antagonist of adenosine and a potential cause of false-negative functional measurements during vasodilator myocardial perfusion. The aim of this systematic review is to summarize the evidence regarding the effects of caffeine intake on functional measurements of myocardial perfusion in patients with suspected coronary artery disease. Pubmed, Web of Science, and Embase were searched using a predefined electronic search strategy. Participants-healthy subjects or patients with known or suspected CAD. Comparisons-recent caffeine intake versus no caffeine intake. Outcomes-measurements of functional myocardial perfusion. Study design-observational. Fourteen studies were deemed eligible for this systematic review. There was a wide range of variability in study design with varying imaging modalities, vasodilator agents, serum concentrations of caffeine, and primary outcome measurements. The available data indicate a significant influence of recent caffeine intake on cardiac perfusion measurements during adenosine and dipyridamole induced hyperemia. These effects have the potential to affect the clinical decision making by re-classification to different risk-categories.


Ethanolic Extract of Centella asiatica Treatment in the Early Stage of Hyperglycemia Condition Inhibits Glomerular Injury and Vascular Remodeling in Diabetic Rat Model.

  • Wiwit A W Setyaningsih‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Diabetes mellitus (DM) is marked by oxidative stress, inflammation, and vascular dysfunction that caused diabetic nephropathy that resulted in end-stage renal disease (ESRD). Vascular dysfunction is characterized by an imbalance in vasoconstrictor and vasodilator agents which underlies the mechanism of vascular injury in DM. Additionally, diminished podocytes correlate with the severity of kidney injury. Podocyturia often precedes proteinuria in several kidney diseases, including diabetic kidney disease. Centella asiatica (CeA) is known as an anti-inflammatory and antioxidant and has neuroprotective effects. This research aimed to investigate the potential effect of CeA to inhibit glomerular injury and vascular remodeling in DM.


Endothelium-dependent relaxation to hydrogen peroxide in canine basilar artery: a potential new cerebral dilator mechanism.

  • Z W Yang‎ et al.
  • Brain research bulletin‎
  • 1998‎

In prostglandin F2alpha(PGF2alpha)-precontracted isolated canine basilar arterial rings, hydrogen peroxide (H2O2) produced endothelium-dependent relaxations at concentrations of from 4.4 x 10(-7) - approximately 4.4 x 10(-5) M. Removal of extracellular Ca2+ ([Ca2+]0) attenuated the relaxant effects of H2O2. Complete inhibition of H2O2 relaxant action was obtained after buffering intracellular Ca2+ ([Ca2+]i), in the endothelial cells, with 10 microM 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM). The H2O2-induced relaxations could be abolished completely by 1200 u/ml catalase and was suppressed significantly by 0.5 microM atropine, 150 microM NG-monomethyl-arginine (L-NMMA), 50 microM NG-nitro-L-arginine methyl ester (L-NAME), 1 microM Fe2+, or 5 microM methylene blue. These inhibitory effects of L-NMMA, L-NAME, or atropine could be reversed partly by 50 microM L-arginine. The Fe2+ inhibition of H2O2-stimulated relaxation was reduced significantly by either 1 mM deferoxamine (a Fe2+ chelator) or 100 microM dimethyl sulfoxide (DMSO, a *OH scavenger). Such relaxant effects of H2O2 were enhanced, significantly, by an acetylcholinesterase antagonist, neostigmine. A variety of pharmacological antagonists (of diverse vasodilator agents) could not inhibit the relaxant action of H2O2. Our observations suggest that at suitable pathophysiological concentrations, H2O2 could induce release of an endothelium-derived relaxing factor (EDRF), probably nitric oxide (NO), from endothelial cells of the canine cerebral artery. The H2O2 relaxant effects are clearly Ca2+-dependent, require formation of cyclic guanosine monophosphate (cGMP), and may be associated with release of endogenous acetylcholine (ACh).


Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model.

  • Daniel Morales-Cano‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit. Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods. Results: In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA. Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH.


Dietary Effects of Chromium Picolinate and Chromium Nanoparticles in Wistar Rats Fed with a High-Fat, Low-Fiber Diet: The Role of Fat Normalization.

  • Michał Majewski‎ et al.
  • Nutrients‎
  • 2022‎

We aimed to evaluate how feeding a high-fat-low-fiber (F) diet to rats and dietary intervention with the implementation of a standard-fat-and-fiber (S) diet affects the response of the cardiovascular system to chromium (III) picolinate (Cr-Pic) and, alternatively, chromium nanoparticles (Cr-NPs). Young male Wistar Han rats (n/group = 12) from either the fatty group (18 weeks on F diet) or the intervention group (9 weeks on F diet + 9 weeks on S diet) received a pharmacologically relevant dose of 0.3 mg Cr/kg body weight in the form of Cr-Pic or Cr-NPs for 9 weeks. Our study on rats confirmed the pro-inflammatory effect of an F diet administered for 18 weeks. In the intervention group, both Cr-Pic and Cr-NPs decreased heart glutathione ratio (GSH+GSSG), enhanced participation of nitric oxide (NO) derived from inducible NO synthase (iNOS) in vascular relaxation to acetylcholine (ACh), increased the vasodilator net effect of cyclooxygenase-2 (COX-2)-derived prostanoids, and increased the production of superoxide anion (O2.-) in aortic rings. Meanwhile, in the fatty group, there was increased heart superoxide dismutase (SOD), decreased heart catalase (CAT), and reduced sensitivity in pre-incubated aortic rings to endogenous prostacyclin (PGI2). The factors that significantly differentiated Cr-NPs from Cr-Pic were (i) decreased blood antioxidant capacity of water-soluble compounds (0.75-fold, p = 0.0205), (ii) increased hydrogen peroxide (H2O2) production (1.59-fold, p = 0.0332), and (iii) modified vasodilator response due to PGI2 synthesis inhibition (in the intervention group) vs. modified ACh-induced vasodilator response due to (iv) COX inhibition and v) PGI2 synthesis inhibition with thromboxane receptor blockage after 18 weeks on F diet (in the fatty group). Our results show that supplementation with Cr-Pic rather than with Cr-NPs is more beneficial in rats who regularly consumed an F diet (e.g., for 18 weeks). On the contrary, in the intervention group (9 weeks on F diet + 9 weeks of dietary fat normalization (the S diet)), Cr-Pic and Cr-NPs could function as pro-oxidant agents, initiating free-radical reactions that led to oxidative stress.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: