Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 900 papers

Functional vagotopy in the cervical vagus nerve of the domestic pig: implications for the study of vagus nerve stimulation.

  • Megan L Settell‎ et al.
  • Journal of neural engineering‎
  • 2020‎

Given current clinical interest in vagus nerve stimulation (VNS), there are surprisingly few studies characterizing the anatomy of the vagus nerve in large animal models as it pertains to on-and off-target engagement of local fibers. We sought to address this gap by evaluating vagal anatomy in the pig, whose vagus nerve organization and size approximates the human vagus nerve.


Anodal block permits directional vagus nerve stimulation.

  • Umair Ahmed‎ et al.
  • Scientific reports‎
  • 2020‎

Vagus nerve stimulation (VNS) is a bioelectronic therapy for disorders of the brain and peripheral organs, and a tool to study the physiology of autonomic circuits. Selective activation of afferent or efferent vagal fibers can maximize efficacy and minimize off-target effects of VNS. Anodal block (ABL) has been used to achieve directional fiber activation in nerve stimulation. However, evidence for directional VNS with ABL has been scarce and inconsistent, and it is unknown whether ABL permits directional fiber activation with respect to functional effects of VNS. Through a series of vagotomies, we established physiological markers for afferent and efferent fiber activation by VNS: stimulus-elicited change in breathing rate (ΔBR) and heart rate (ΔHR), respectively. Bipolar VNS trains of both polarities elicited mixed ΔHR and ΔBR responses. Cathode cephalad polarity caused an afferent pattern of responses (relatively stronger ΔBR) whereas cathode caudad caused an efferent pattern (stronger ΔHR). Additionally, left VNS elicited a greater afferent and right VNS a greater efferent response. By analyzing stimulus-evoked compound nerve potentials, we confirmed that such polarity differences in functional responses to VNS can be explained by ABL of A- and B-fiber activation. We conclude that ABL is a mechanism that can be leveraged for directional VNS.


The Effectiveness of Vagus Nerve Stimulation in Drug-Resistant Epilepsy Correlates with Vagus Nerve Stimulation-Induced Electroencephalography Desynchronization.

  • Aude Sangare‎ et al.
  • Brain connectivity‎
  • 2020‎

Introduction: VNS is an adjunctive neuromodulation therapy for patients with drug-refractory epilepsy. The antiseizure effect of VNS is thought to be related to a diffuse modulation of functional connectivity but remains to be confirmed. Aim: To investigate electroencephalographic (EEG) metrics of functional connectivity in patients with drug-refractory epilepsy treated by vagus nerve stimulation (VNS), between VNS-stimulated "ON" and nonstimulated "OFF" periods and between responder (R) and nonresponder (NR) patients. Methods: Scalp-EEG was performed for 35 patients treated by VNS, using 21 channels and 2 additional electrodes on the neck to detect the VNS stimulation. Patients were defined as VNS responders if a reduction of seizure frequency of ∼50% was documented. We analyzed the synchronization in EEG time series during "ON" and "OFF" periods of stimulation, using average phase lag index (PLI) in signal space and phase-locking value (PLV) between 10 sources. Based on graph theory, we computed brain network models and analyzed minimum spanning tree (MST) for responder and nonresponder patients. Results: Among 35 patients treated by VNS for a median time of 7 years (range 4 months to 22 years), 20 were R and 15 were NR. For responder patients, PLI during ON periods was significantly lower than that during OFF periods in delta (p = 0.009), theta (p = 0.02), and beta (p = 0.04) frequency bands. For nonresponder patients, there were no significant differences between ON and OFF periods. Moreover, variations of seizure frequency with VNS correlated with the PLI OFF/ON ratio in delta (p = 0.02), theta (p = 0.04), and beta (p = 0.03) frequency bands. Our results were confirmed using PLV in theta band (p < 0.05). No significant differences in MST were observed between R and NR patients. Conclusion: The correlation between VNS-induced interictal EEG time-series desynchronization and decrease in seizure frequency suggested that VNS therapeutic impact might be related to changes in interictal functional connectivity. Impact statement Electroencephalography (EEG) desynchronization has been proposed to be a mechanism for antiepileptic effect of vagus nerve stimulation (VNS). We measured interictal EEG time-series synchronization during stimulated (ON) and nonstimulated (OFF) periods in epileptic patients treated by VNS. Phase lag index differences between ON and OFF periods were measured in delta, theta, and beta bands only in responder patients. To our knowledge, our study is the first to statistically correlate interictal cortical desynchronization during ON periods with reduction in seizure frequency. Our result supports the hypothesis that the antiseizure effect of VNS is mediated by cortical desynchronization.


Flat electrode contacts for vagus nerve stimulation.

  • Jesse E Bucksot‎ et al.
  • PloS one‎
  • 2019‎

The majority of available systems for vagus nerve stimulation use helical stimulation electrodes, which cover the majority of the circumference of the nerve and produce largely uniform current density within the nerve. Flat stimulation electrodes that contact only one side of the nerve may provide advantages, including ease of fabrication. However, it is possible that the flat configuration will yield inefficient fiber recruitment due to a less uniform current distribution within the nerve. Here we tested the hypothesis that flat electrodes will require higher current amplitude to activate all large-diameter fibers throughout the whole cross-section of a nerve than circumferential designs. Computational modeling and in vivo experiments were performed to evaluate fiber recruitment in different nerves and different species using a variety of electrode designs. Initial results demonstrated similar fiber recruitment in the rat vagus and sciatic nerves with a standard circumferential cuff electrode and a cuff electrode modified to approximate a flat configuration. Follow up experiments comparing true flat electrodes to circumferential electrodes on the rabbit sciatic nerve confirmed that fiber recruitment was equivalent between the two designs. These findings demonstrate that flat electrodes represent a viable design for nerve stimulation that may provide advantages over the current circumferential designs for applications in which the goal is uniform activation of all fascicles within the nerve.


Could vagus nerve stimulation influence bone remodeling?

  • Ahmad Tamimi‎ et al.
  • Journal of musculoskeletal & neuronal interactions‎
  • 2021‎

To investigate the effect of vagus nerve stimulation (VNS) on the bone mineral density (BMD) in epileptic patients.


Ultrasonography of the Vagus Nerve in Parkinson's Disease.

  • Nadin Fedtke‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Based on the topographic distribution of α-synuclein-enriched Lewy bodies, it has been hypothesized that Parkinson's disease may start in the gastrointestinal tract and gain access to the central nervous system via the vagus nerve. Since ultrasonography is a powerful tool to study peripheral nerve disturbances, we conducted ultrasonography of the vagus nerve in 32 patients with Parkinson's disease, 15 disease controls and 15 healthy controls. The cross-sectional area and echogenicity measured on transverse scans of the vagus nerve did not differ significantly between these groups. Therefore, the observed intraneuronal changes in Parkinson's disease are not associated with ultrasonographic disruptions of the vagus nerve integrity. HIGHLIGHTS We studied ultrasonography of the vagus nerve in 32 patients with Parkinson's disease and in 15 disease controls and 15 healthy controls.The sonographic cross-sectional area measured using high-frequency linear array transducers did not differ significantly between both groups.Ultrasonography of the vagal nerve does not reflect cellular damage caused by α-synuclein-enriched Lewy bodies in nerves of patients with Parkinson's disease.


Transcutaneous vagus nerve stimulation improves interoceptive accuracy.

  • V Villani‎ et al.
  • Neuropsychologia‎
  • 2019‎

How can interoceptive accuracy, i.e. the objective ability to identify interoceptive signals, be improved? In the present study, we investigated whether non-invasive stimulation of the auricular branch of the vagus nerve (taVNS) modulates cardiac interoceptive accuracy, interoceptive sensibility, i.e. confidence in the identification of bodily signals, and interoceptive awareness, i.e. the capacity to evaluate one's ability in the objective task. Using a single-blind within-subjects design we compared participants' performance on the heartbeat counting task and on the heartbeat discrimination task during active and sham taVNS stimulation. Results revealed improved accuracy during active taVNS on the heartbeat discrimination task but not on the heartbeat counting task. Participants were also more confident during active stimulation, but interoceptive awareness was not modulated by taVNS. These findings show that taVNS can modulate interoceptive processing and suggest its potential as a tool to investigate body-brain interactions.


Neuroendocrine homeostasis after vagus nerve stimulation in rats.

  • K V Thrivikraman‎ et al.
  • Psychoneuroendocrinology‎
  • 2013‎

The vagus nerve is important in maintaining HPA axis and sympatho-adrenal system (SAS) homeostasis, however little is known about the effect of vagus nerve stimulation (VNS), as used therapeutically, on these functions. Accordingly, the effect of VNS on plasma indices of HPA axis (ACTH, corticosterone), and SAS (norepinephrine, epinephrine) function were evaluated in rats.


Kilohertz frequency nerve block enhances anti-inflammatory effects of vagus nerve stimulation.

  • Yogi A Patel‎ et al.
  • Scientific reports‎
  • 2017‎

Efferent activation of the cervical vagus nerve (cVN) dampens systemic inflammatory processes, potentially modulating a wide-range of inflammatory pathological conditions. In contrast, afferent cVN activation amplifies systemic inflammatory processes, leading to activation of the hypothalamic-pituitary-adrenal (HPA) axis, the sympathetic nervous system through the greater splanchnic nerve (GSN), and elevation of pro-inflammatory cytokines. Ideally, to clinically implement anti-inflammatory therapy via cervical vagus nerve stimulation (cVNS) one should selectively activate the efferent pathway. Unfortunately, current implementations, in animal and clinical investigations, activate both afferent and efferent pathways. We paired cVNS with kilohertz electrical stimulation (KES) nerve block to preferentially activate efferent pathways while blocking afferent pathways. Selective efferent cVNS enhanced the anti-inflammatory effects of cVNS. Our results demonstrate that: (i) afferent, but not efferent, cVNS synchronously activates the GSN in a dose-dependent manner; (ii) efferent cVNS enabled by complete afferent KES nerve block enhances the anti-inflammatory benefits of cVNS; and (iii) incomplete afferent KES nerve block exacerbates systemic inflammation. Overall, these data demonstrate the utility of paired efferent cVNS and afferent KES nerve block for achieving selective efferent cVNS, specifically as it relates to neuromodulation of systemic inflammation.


Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking.

  • Lorenza S Colzato‎ et al.
  • Neuropsychologia‎
  • 2018‎

Creativity is one of the most important cognitive skills in our complex and fast-changing world. Previous correlative evidence showed that gamma-aminobutyric acid (GABA) is involved in divergent but not convergent thinking. In the current study, a placebo/sham-controlled, randomized between-group design was used to test a causal relation between vagus nerve and creativity. We employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique to stimulate afferent fibers of the vagus nerve and speculated to increase GABA levels, in 80 healthy young volunteers. Creative performance was assessed in terms of divergent thinking (Alternate Uses Task) and convergent thinking tasks (Remote Associates Test, Creative Problem Solving Task, Idea Selection Task). Results demonstrate active tVNS, compared to sham stimulation, enhanced divergent thinking. Bayesian analysis reported the data to be inconclusive regarding a possible effect of tVNS on convergent thinking. Therefore, our findings corroborate the idea that the vagus nerve is causally involved in creative performance. Even thought we did not directly measure GABA levels, our results suggest that GABA (likely to be increased in active tVNS condition) supports the ability to select among competing options in high selection demand (divergent thinking) but not in low selection demand (convergent thinking).


Vagus Nerve Stimulation for Depression: A Systematic Review.

  • Hang Lv‎ et al.
  • Frontiers in psychology‎
  • 2019‎

Background: Depression is a common mental disorder worldwide. Psychological treatments and antidepressant medication are the usual treatments for depression. However, a large proportion of patients with depression do not respond to the treatments. In 2005, Vagus nerve stimulation was approved for the adjunctive long-term treatment of chronic or recurrent depression in adult patients experiencing a major depressive episode who had failed to respond to four or more adequate antidepressant treatments. However, the efficacy of VNS for treating depression remains unclear. Accordingly, we performed a systematic review to evaluate the efficacy and safety of VNS. Methods: We conducted a systematic review in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. Systematic search was performed in the database of Pubmed, Embase, CENTRAL, and Web of science for identifying the suitable trials. Suicidal rate was considered as the primary outcome in this review. Result: Only two randomized sham controlled add-on studies including 255 cases (134 with VNS treatment and 121 control cases) were included in this review. None of the studies reported suicidal rate. We performed a qualitative analysis and it is suggested that there was no significant statistic difference between VNS and sham VNS on the score of 24-item Hamilton Rating Scale for Depression (HAMD24) (MD: -2.40, 95% CI: -7.90 to 3.10). Similar findings were also reported on improvement percentage of HAMD24 (MD: 1.00, 95%CI: -6.06 to 8.06), Montgomery-Asberg Depression Rating Scale (MADRS) (MD: 4.70, 95%CI: -2.98 to 12.38) and 30 item Inventory of Depressive Symptomalogy-Self-Report (IDS-SR30) (MD: 4.9, 95%CI: -1.89 to 11.69). However, a marginal difference of Beck Depression Inventory self-rating score was detected between the real and sham treatment (MD: 7.80, 95% CI: 0.34 to 15.26). Aminor effect of IDS-SR30was also found in real VNS group (RR: 2.33, 95% CI: 1.07 to 5.10). Conclusion: The efficacy and safety of VNS for depression is still unclear. Further randomized controlled trials are needed to confirm the efficacy and safety of VNS.


Management of vagus nerve injury afer carotid endarterectomy.

  • A F AbuRahma‎ et al.
  • Surgery‎
  • 1996‎

Inadvertent injury to the vagus nerve or its branches during carotid endarterectomy can result in adductor vocal cord paralysis (hoarseness) and cricopharyngeal dysfunction (dysphagia) with aspiration, known as "double trouble." This study describes our experience in the management of this complication in cases where conservative treatment failed.


Brain-clinical signatures for vagus nerve stimulation response.

  • Zhihao Guo‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

Vagus nerve stimulation (VNS) is a valuable treatment for drug-resistant epilepsy (DRE) without the indication of surgical resection. The clinical heterogeneity of DRE has limited the optimal indication of choice and diagnosis prediction. The study aimed to explore the correlations of brain-clinical signatures with the clinical phenotype and VNS responsiveness.


Factors Affecting Vagus Nerve Stimulation Outcomes in Epilepsy.

  • Mehdi Abbasi‎ et al.
  • Neurology research international‎
  • 2021‎

Epilepsy as a common neurological disease is mostly managed effectively with antiepileptic medications. One-third of patients do not respond to medical treatments requiring alternative therapies. Vagus nerve stimulation (VNS) has been used in the last decades for the treatment of medically resistant epilepsy. Despite the extensive use of VNS in these patients, factors associated with clinical outcomes of VNS remain to be elucidated. In this study, we evaluated factors affecting VNS outcomes in epileptic patients to have a better understanding of patients who are better candidates for VNS therapy. Several databases including PubMed, Scopus, and Google Scholar were searched through June 2020 for relevant articles. The following factors were assessed in this review: previous surgical history, age at implantation and gender, types of epilepsy, duration of epilepsy, age at epilepsy onset, frequency of attacks, antiepileptic drugs, VNS parameters, EEG findings, MRI findings, and biomarkers. Literature data show that nonresponder rates range between 25% and 65%. Given the complexity and diversity of factors associated with response to VNS, more clinical studies are needed to establish better paradigm for selection of patients for VNS therapy.


The vagus nerve modulates CD4+ T cell activity.

  • Khalil Karimi‎ et al.
  • Brain, behavior, and immunity‎
  • 2010‎

The vagus nerve has a counter-inflammatory role in a number of model systems. While the majority of these anti-inflammatory effects have been ascribed to the activation of nicotinic receptors on macrophages, little is known about the role of the vagus in modulating the activity of other cells involved in inflammatory responses. Here, we demonstrate that following subdiaphragmatic vagotomy of mice CD4(+) T cells from the spleen proliferated at a higher rate and produced more pro-inflammatory cytokines, including TNF and IFN-gamma, upon in vitro stimulation. Cell responses were restored to control levels following the administration of nicotine and the treatment of non-vagotomized animals with a nicotinic receptor antagonist could mimic the effect of vagotomy. Our results suggest that vagal input constitutively down-regulates T cell function through action at nicotinic receptors and the role of the vagus in regulating immune responses is more extensive than previously demonstrated.


Short-pulsed micro-magnetic stimulation of the vagus nerve.

  • Hongbae Jeong‎ et al.
  • Frontiers in physiology‎
  • 2022‎

Vagus nerve stimulation (VNS) is commonly used to treat drug-resistant epilepsy and depression. The therapeutic effect of VNS depends on stimulating the afferent vagal fibers. However, the vagus is a mixed nerve containing afferent and efferent fibers, and the stimulation of cardiac efferent fibers during VNS may produce a rare but severe risk of bradyarrhythmia. This side effect is challenging to mitigate since VNS, via electrical stimulation technology used in clinical practice, requires unique electrode design and pulse optimization for selective stimulation of only the afferent fibers. Here we describe a method of VNS using micro-magnetic stimulation (µMS), which may be an alternative technique to induce a focal stimulation, enabling a selective fiber stimulation. Micro-coils were implanted into the cervical vagus nerve in adult male Wistar rats. For comparison, the physiological responses were recorded continuously before, during, and after stimulation with arterial blood pressure (ABP), respiration rate (RR), and heart rate (HR). The electrical VNS caused a decrease in ABP, RR, and HR, whereas µM-VNS only caused a transient reduction in RR. The absence of an HR modulation indicated that µM-VNS might provide an alternative technology to VNS with fewer heart-related side effects, such as bradyarrhythmia. Numerical electromagnetic simulations helped estimate the optimal coil orientation with respect to the nerve to provide information on the electric field's spatial distribution and strength. Furthermore, a transmission emission microscope provided very high-resolution images of the cervical vagus nerve in rats, which identified two different populations of nerve fibers categorized as large and small myelinated fibers.


Tinnitus treatment by vagus nerve stimulation: A systematic review.

  • I Stegeman‎ et al.
  • PloS one‎
  • 2021‎

Tinnitus is a phantom sensation of sound, which can have a negative impact on quality of life of those affected. No curative treatments are currently known. Neuromodulation by vagus nerve stimulation has emerged as a new treatment option for tinnitus, though till date the effectiveness remains unclear. Therefore, we aim to review the effect of vagus nerve stimulation on tinnitus distress and tinnitus symptom severity in patients with chronic tinnitus.


Vagus nerve inflammation contributes to dysautonomia in COVID-19.

  • Marcel S Woo‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction. We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19. Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.


Selective stimulation of the ferret abdominal vagus nerve with multi-contact nerve cuff electrodes.

  • Jonathan A Shulgach‎ et al.
  • Scientific reports‎
  • 2021‎

Dysfunction and diseases of the gastrointestinal (GI) tract are a major driver of medical care. The vagus nerve innervates and controls multiple organs of the GI tract and vagus nerve stimulation (VNS) could provide a means for affecting GI function and treating disease. However, the vagus nerve also innervates many other organs throughout the body, and off-target effects of VNS could cause major side effects such as changes in blood pressure. In this study, we aimed to achieve selective stimulation of populations of vagal afferents using a multi-contact cuff electrode wrapped around the abdominal trunks of the vagus nerve. Four-contact nerve cuff electrodes were implanted around the dorsal (N = 3) or ventral (N = 3) abdominal vagus nerve in six ferrets, and the response to stimulation was measured via a 32-channel microelectrode array (MEA) inserted into the left or right nodose ganglion. Selectivity was characterized by the ability to evoke responses in MEA channels through one bipolar pair of cuff contacts but not through the other bipolar pair. We demonstrated that it was possible to selectively activate subpopulations of vagal neurons using abdominal VNS. Additionally, we quantified the conduction velocity of evoked responses to determine what types of nerve fibers (i.e., Aδ vs. C) responded to stimulation. We also quantified the spatial organization of evoked responses in the nodose MEA to determine if there is somatotopic organization of the neurons in that ganglion. Finally, we demonstrated in a separate set of three ferrets that stimulation of the abdominal vagus via a four-contact cuff could selectively alter gastric myoelectric activity, suggesting that abdominal VNS can potentially be used to control GI function.


Vagus Nerve Stimulation Reduces Indomethacin-Induced Small Bowel Inflammation.

  • April S Caravaca‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Crohn's disease is a chronic, idiopathic condition characterized by intestinal inflammation and debilitating gastrointestinal symptomatology. Previous studies of inflammatory bowel disease (IBD), primarily in colitis, have shown reduced inflammation after electrical or pharmacological activation of the vagus nerve, but the scope and kinetics of this effect are incompletely understood. To investigate this, we studied the effect of electrical vagus nerve stimulation (VNS) in a rat model of indomethacin-induced small intestinal inflammation. 1 min of VNS significantly reduced small bowel total inflammatory lesion area [(mean ± SEM) sham: 124 ± 14 mm2, VNS: 62 ± 14 mm2, p = 0.002], intestinal peroxidation and chlorination rates, and intestinal and systemic pro-inflammatory cytokine levels as compared with sham-treated animals after 24 h following indomethacin administration. It was not known whether this observed reduction of inflammation after VNS in intestinal inflammation was mediated by direct innervation of the gut or if the signals are relayed through the spleen. To investigate this, we studied the VNS effect on the small bowel lesions of splenectomized rats and splenic nerve stimulation (SNS) in intact rats. We observed that VNS reduced small bowel inflammation also in splenectomized rats but SNS alone failed to significantly reduce small bowel lesion area. Interestingly, VNS significantly reduced small bowel lesion area for 48 h when indomethacin administration was delayed. Thus, 1 min of electrical activation of the vagus nerve reduced indomethacin-induced intestinal lesion area by a spleen-independent mechanism. The surprisingly long-lasting and spleen-independent effect of VNS on the intestinal response to indomethacin challenge has important implications on our understanding of neural control of intestinal inflammation and its potential translation to improved therapies for IBD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: