Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Dissecting the Proton Transport Pathway in Oral Squamous Cell Carcinoma: State of the Art and Theranostics Implications.

  • Alejandro I Lorenzo-Pouso‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Cancer cells overexpress proton exchangers at the plasma membrane in order acidify the extracellular matrix and maintain the optimal pH for sustaining cancer growth. Among the families of proton exchangers implicated in carcinogenesis, carbonic anhydrases (CAs), monocarboxylate transporters (MCTs), Na+/H+ exchangers (NHEs), sodium bicarbonate cotransporters (NBCs), and vacuolar ATPases (V-ATPases) are highlighted. Considerable research has been carried out into the utility of the understanding of these machineries in the diagnosis and prognosis of several solid tumors. In addition, as therapeutic targets, the interference of their functions has contributed to the discovery or optimization of cancer therapies. According to recent reports, the study of these mechanisms seems promising in the particular case of oral squamous cell carcinoma (OSCC). In the present review, the latest advances in these fields are summarized, in particular, the usefulness of proton exchangers as potential prognostic biomarkers and therapeutic targets in OSCC.


A different conformation for EGC stator subcomplex in solution and in the assembled yeast V-ATPase: possible implications for regulatory disassembly.

  • Meikel Diepholz‎ et al.
  • Structure (London, England : 1993)‎
  • 2008‎

Vacuolar ATPases (V-ATPases) are ATP-dependent proton pumps that maintain the acidity of cellular compartments. They are composed of a membrane-integrated proton-translocating V(0) and an extrinsic cytoplasmic catalytic domain V(1), joined by several connecting subunits. To clarify the arrangement of these peripheral connections and their interrelation with other subunits of the holocomplex, we have determined the solution structures of isolated EG and EGC connecting subcomplexes by small angle X-ray scattering and the 3D map of the yeast V-ATPase by electron microscopy. In solution, EG forms a slightly kinked rod, which assembles with subunit C into an L-shaped structure. This model is supported by the microscopy data, which show three copies of EG with two of these linked by subunit C. However, the relative arrangement of the EG and C subunits in solution is more open than that in the holoenzyme, suggesting a conformational change of EGC during regulatory assembly and disassembly.


The signaling lipid PI(3,5)P₂ stabilizes V₁-V(o) sector interactions and activates the V-ATPase.

  • Sheena Claire Li‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V1 domain from the integral membrane V(o) domain. Multiple stresses induce changes in V1-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). V-ATPase activation through V1-V(o) assembly in response to salt stress is strongly dependent on PI(3,5)P2 synthesis. Purified V(o) complexes preferentially bind to PI(3,5)P2 on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P2 levels in vivo recruits the N-terminal domain of V(o)-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V1-V(o) interaction, suggesting that interaction of Vph1p with PI(3,5)P2-containing membranes stabilizes V1-V(o) assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1 and vac14 mutants and suggest that human disease phenotypes associated with PI(3,5)P2 loss may arise from compromised V-ATPase stability and regulation.


Loss of the V-ATPase B1 subunit isoform expressed in non-neuronal cells of the mouse olfactory epithelium impairs olfactory function.

  • Teodor G Păunescu‎ et al.
  • PloS one‎
  • 2012‎

The vacuolar proton-pumping ATPase (V-ATPase) is the main mediator of intracellular organelle acidification and also regulates transmembrane proton (H(+)) secretion, which is necessary for an array of physiological functions fulfilled by organs such as the kidney, male reproductive tract, lung, bone, and ear. In this study we characterize expression of the V-ATPase in the main olfactory epithelium of the mouse, as well as a functional role for the V-ATPase in odor detection. We report that the V-ATPase localizes to the apical membrane microvilli of olfactory sustentacular cells and to the basolateral membrane of microvillar cells. Plasma membrane V-ATPases containing the B1 subunit isoform are not detected in olfactory sensory neurons or in the olfactory bulb. This precise localization of expression affords the opportunity to ascertain the functional relevance of V-ATPase expression upon innate, odor-evoked behaviors in B1-deficient mice. This animal model exhibits diminished innate avoidance behavior (revealed as a decrease in freezing time and an increase in the number of sniffs in the presence of trimethyl-thiazoline) and diminished innate appetitive behavior (a decrease in time spent investigating the urine of the opposite sex). We conclude that V-ATPase-mediated H(+) secretion in the olfactory epithelium is required for optimal olfactory function.


Structural basis of V-ATPase VO region assembly by Vma12p, 21p, and 22p.

  • Hanlin Wang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Vacuolar-type adenosine triphosphatases (V-ATPases) are rotary proton pumps that acidify specific intracellular compartments in almost all eukaryotic cells. These multi-subunit enzymes consist of a soluble catalytic V1 region and a membrane-embedded proton-translocating VO region. VO is assembled in the endoplasmic reticulum (ER) membrane, and V1 is assembled in the cytosol. However, V1 binds VO only after VO is transported to the Golgi membrane, thereby preventing acidification of the ER. We isolated VO complexes and subcomplexes from Saccharomyces cerevisiae bound to V-ATPase assembly factors Vma12p, Vma21p, and Vma22p. Electron cryomicroscopy shows how the Vma12-22p complex recruits subunits a, e, and f to the rotor ring of VO while blocking premature binding of V1. Vma21p, which contains an ER-retrieval motif, binds the VO:Vma12-22p complex, "mature" VO, and a complex that appears to contain a ring of loosely packed rotor subunits and the proteins YAR027W and YAR028W. The structures suggest that Vma21p binds assembly intermediates that contain a rotor ring and that activation of proton pumping following assembly of V1 with VO removes Vma21p, allowing V-ATPase to remain in the Golgi. Together, these structures show how Vma12-22p and Vma21p function in V-ATPase assembly and quality control, ensuring the enzyme acidifies only its intended cellular targets.


Ketamine promotes the amyloidogenic pathway by regulating endosomal pH.

  • Weishu Ren‎ et al.
  • Toxicology‎
  • 2022‎

Ketamine is an anesthetic and addictive drug that can cause cognitive dysfunction and neuroinflammation. Studies have shown that carboxy-terminal fragment derived from β-secretase (CTF-β) and amyloid beta (Aβ), the amyloidogenic products of amyloid precursor protein (APP), can also induce neuroinflammation and impair cognitive function. However, it remains unclear whether ketamine regulates the amyloidogenic pathway. In the endosome, APP is cleaved by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), whose activity is influenced by pH. Endosomal acidification is mainly regulated by sodium hydrogen exchanger 6 (NHE6), which leaks protons out of endosomes, and vacuolar proton translocating ATPases (V-ATPase), which pump protons into endosomes. Therefore, we hypothesized that ketamine lowers the endosomal pH by reducing the endosomal NHE6 protein level, and this hyperacidification promotes the amyloidogenic pathway. We set up C57BL/6 J mouse models using 10, 20, 40, 80, and 100 mg/kg ketamine administration and SH-SY5Y cell models using 1, 10, 100, and 1000 μM ketamine administration to investigate its effects on the amyloidogenic pathway at different doses. Western blotting results showed that 100 mg/kg ketamine treatment in vivo and 1000 μM ketamine treatment in vitro increased endosomal BACE1 and CTF-β protein levels and reduced endosomal NHE6 and APP protein levels. The endosomal accumulation of BACE1 caused by ketamine administration was also observed using confocal imaging. Moreover, flow cytometry indicated that ketamine treatment lowered the endosomal pH value of SH-SY5Y cells. Later, cells were pretreated with monensin to restore the endosomal pH. Monensin did not affect amyloidogenic-related proteins or NHE6 directly; therefore, ketamine-promoted endosomal amyloidogenic processing and BACE1 accumulation were depleted by restoring endosomal acidity through monensin pretreatment. Finally, knockdown of NHE6 promoted the amyloidogenic pathway similarly and prevented further enhancement by ketamine. These results indicated that the effects of ketamine on the amyloidogenic pathway were dependent on the reduction of NHE6 and endosomal pH.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: