Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36,676 papers

Vaccines today, vaccines tomorrow: a perspective.

  • Christian Loucq‎
  • Clinical and experimental vaccine research‎
  • 2013‎

Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles Mérieux are known among experts only despite their contribution to global health. Thanks to a vaccine, smallpox has been eradicated, polio has nearly disappeared, Haemophilus influenzae B, measles and more recently meningitis A are controlled in many countries. While a malaria vaccine is undergoing phase 3, International Vaccine Institute, in collaboration with an Indian manufacturer has brought an oral inactivated cholera vaccine to pre-qualification. The field of vaccinology has undergone major changes thanks to philanthropists such as Bill and Melinda Gates, initiatives like the Decade of Vaccines and public private partnerships. Current researches on vaccines have more challenging targets like the dengue viruses, malaria, human immunodeficiency virus, the respiratory syncytial virus and nosocomial diseases. Exciting research is taking place on new adjuvants, nanoparticles, virus like particles and new route of administration. An overcrowded infant immunization program, anti-vaccine groups, immunizing a growing number of elderlies and delivering vaccines to difficult places are among challenges faced by vaccinologists and global health experts.


Vaccines for preventing rotavirus diarrhoea: vaccines in use.

  • Karla Soares-Weiser‎ et al.
  • The Cochrane database of systematic reviews‎
  • 2019‎

Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech).


Vaccines for preventing rotavirus diarrhoea: vaccines in use.

  • Karla Soares-Weiser‎ et al.
  • The Cochrane database of systematic reviews‎
  • 2019‎

Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech).


Vaccines for preventing rotavirus diarrhoea: vaccines in use.

  • Hanna Bergman‎ et al.
  • The Cochrane database of systematic reviews‎
  • 2021‎

Rotavirus is a common cause of diarrhoea, diarrhoea-related hospital admissions, and diarrhoea-related deaths worldwide. Rotavirus vaccines prequalified by the World Health Organization (WHO) include Rotarix (GlaxoSmithKline), RotaTeq (Merck), and, more recently, Rotasiil (Serum Institute of India Ltd.), and Rotavac (Bharat Biotech Ltd.).


Cancer vaccines.

  • Lisa H Butterfield‎
  • BMJ (Clinical research ed.)‎
  • 2015‎

Cancer vaccines are designed to promote tumor specific immune responses, particularly cytotoxic CD8 positive T cells that are specific to tumor antigens. The earliest vaccines, which were developed in 1994-95, tested non-mutated, shared tumor associated antigens that had been shown to be immunogenic and capable of inducing clinical responses in a minority of people with late stage cancer. Technological developments in the past few years have enabled the investigation of vaccines that target mutated antigens that are patient specific. Several platforms for cancer vaccination are being tested, including peptides, proteins, antigen presenting cells, tumor cells, and viral vectors. Standard of care treatments, such as surgery and ablation, chemotherapy, and radiotherapy, can also induce antitumor immunity, thereby having cancer vaccine effects. The monitoring of patients' immune responses at baseline and after standard of care treatment is shedding light on immune biomarkers. Combination therapies are being tested in clinical trials and are likely to be the best approach to improving patient outcomes.


Anthrax vaccines.

  • Miroslav Splino‎ et al.
  • Annals of Saudi medicine‎
  • 2005‎

Anthrax, an uncommon disease in humans, is caused by a large bacterium, Bacillus anthracis. The risk of inhalation infection is the main indication for anthrax vaccination. Pre-exposure vaccination is provided by an acellular vaccine (anthrax vaccine adsorbed or AVA), which contains anthrax toxin elements and results in protective immunity after 3 to 6 doses. Anthrax vaccine precipitated (AVP) is administered at primovaccination in 3 doses with a booster dose after 6 months. To evoke and maintain protective immunity, it is necessary to administer a booster dose once at 12 months. In Russia, live spore vaccine (STI) has been used in a two-dose schedule. Current anthrax vaccines show considerable local and general reactogenicity (erythema, induration, soreness, fever). Serious adverse reactions occur in about 1% of vaccinations. New second-generation vaccines in current research programs include recombinant live vaccines and recombinant sub-unit vaccines.


First International Precision Vaccines Conference: Multidisciplinary Approaches to Next-Generation Vaccines.

  • Francesco Borriello‎ et al.
  • mSphere‎
  • 2018‎

Vaccines represent a remarkable success in the history of medicine since they have prevented and, in some instances, eradicated a range of infectious diseases. However, for many existing vaccines, immunogenicity is limited, requiring multiple booster doses, and we are still unable to target many pathogens due to intrinsic features of the microorganism, such as genetic/antigenic variability between strains, and our limited understanding of the variables that regulate vaccine responsiveness, including age- and sex-specific differences. Moreover, the traditional approach to vaccine development is often empirical, relying on inactivation of microorganisms or purification of their components, which are usually less immunogenic than the whole microorganism from which they derive. This approach has yielded multiple important vaccines but has failed to consistently generate vaccines that are sufficiently immunogenic in populations with limited immune responsiveness such as newborns and elderly individuals. In an effort to trigger impactful collaborations, a community of scientists gathered in Boston in the United States for the first biennial International Precision Vaccines Conference, sponsored by the Boston Children's Hospital Precision Vaccines Program, to discuss innovation in vaccinology. Recent advancements in the field of systems biology that can identify vaccine immunogenicity biomarkers for target populations, in human in vitro models, and in novel adjuvant and formulation strategies offer unprecedented opportunities to dissect the human immune response to vaccines and inform dramatic improvements in vaccine efficacy. These approaches are poised to have a major scientific and translational impact in vaccinology.


Human vaccines: news.

  • Eva M Riedmann‎
  • Human vaccines & immunotherapeutics‎
  • 2012‎

High safety marks for Merck’s Gardasil Cuba tests prostate cancer vaccine HIV’s weak spot: V2 Unique anti-cancer agent ColoAd1 enters the clinic Broadly neutralizing antibodies against influenza A and B discovered Clinical trials initiated: Nexvax2 therapeutic vaccine for celiac disease The 20 top-selling vaccines in the first half of 2012 Influenza vaccine safe for pregnant women


Anti-addiction vaccines.

  • Xiaoyun Shen‎ et al.
  • F1000 medicine reports‎
  • 2011‎

Despite intensive efforts to eradicate it, addiction to both legal and illicit drugs continues to be a major worldwide medical and social problem. Anti-addiction vaccines can produce the antibodies to block the effects of these drugs on the brain, and have great potential to ameliorate the morbidity and mortality associated with illicit drug intoxications. This review provides a current overview of anti-addiction vaccines that are under clinical trial and pre-clinical research evaluation. It also outlines the development challenges, ethical concerns, and likely future intervention for anti-addiction vaccines.


Advances in Vaccines.

  • Helen H Mao‎ et al.
  • Advances in biochemical engineering/biotechnology‎
  • 2020‎

Vaccines represent one of the most important advances in science and medicine, helping people around the world in preventing the spread of infectious diseases. However, there are still gaps in vaccination programs in many countries. Out of 11.2 million children born in EU region, more than 500,000 infants did not receive the complete three-dose series of diphtheria, pertussis, and tetanus vaccine before the first birthday. Data shows that there were more than 30,000 measles cases in the European region in recent years, and measles cases are rising in the USA. There are about 20 million children in the world still not getting adequate coverage of basic vaccines. Emerging infectious diseases such as malaria, Ebola virus disease, and Zika virus disease also threaten public health around the world. This chapter provides an overview of recent advances in vaccine development and technologies, manufacturing, characterization of various vaccines, challenges, and strategies in vaccine clinical development. It also provides an overview of recently approved major vaccines for human use.


Respiratory Syncytial Virus Vaccines: A Review of the Candidates and the Approved Vaccines.

  • Xanthippi Topalidou‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2023‎

Respiratory syncytial virus (RSV) is responsible for a significant proportion of global morbidity and mortality affecting young children and older adults. In the aftermath of formalin-inactivated RSV vaccine development, the effort to develop an immunizing agent was carefully guided by epidemiologic and pathophysiological evidence of the virus, including various vaccine technologies. The pipeline of RSV vaccine development includes messenger ribonucleic acid (mRNA), live-attenuated (LAV), subunit, and recombinant vector-based vaccine candidates targeting different virus proteins. The availability of vaccine candidates of various technologies enables adjustment to the individualized needs of each vulnerable age group. Arexvy® (GSK), followed by Abrysvo® (Pfizer), is the first vaccine available for market use as an immunizing agent to prevent lower respiratory tract disease in older adults. Abrysvo is additionally indicated for the passive immunization of infants by maternal administration during pregnancy. This review presents the RSV vaccine pipeline, analyzing the results of clinical trials. The key features of each vaccine technology are also mentioned. Currently, 24 vaccines are in the clinical stage of development, including the 2 licensed vaccines. Research in the field of RSV vaccination, including the pharmacovigilance methods of already approved vaccines, promotes the achievement of successful prevention.


Vaccines: hope vs reality.

  • Graham Lawton‎
  • New scientist (1971)‎
  • 2020‎

Are the candidate vaccines in late-stage human trials really everything the world has been waiting for, asks Graham Lawton.


Vaccines for canine leishmaniasis.

  • Clarisa B Palatnik-de-Sousa‎
  • Frontiers in immunology‎
  • 2012‎

Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL) is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global warming, coinfection with immunosuppressive diseases, and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL) in the Americas, the Middle East, Central Asia, China, and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases, and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost-effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine VL. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans and dogs against VL.


Neo-Antigen mRNA Vaccines.

  • Arthur Esprit‎ et al.
  • Vaccines‎
  • 2020‎

The interest in therapeutic cancer vaccines has caught enormous attention in recent years due to several breakthroughs in cancer research, among which the finding that successful checkpoint blockade treatments reinvigorate neo-antigen-specific T cells and that successful adoptive cell therapies are directed towards neo-antigens. Neo-antigens are cancer-specific antigens, which develop from somatic mutations in the cancer cell genome that can be highly immunogenic and are not subjected to central tolerance. As the majority of neo-antigens are unique to each patient's cancer, a vaccine technology that is flexible and potent is required to develop personalized neo-antigen vaccines. In vitro transcribed mRNA is such a technology platform and has been evaluated for delivery of neo-antigens to professional antigen-presenting cells both ex vivo and in vivo. In addition, strategies that support the activity of T cells in the tumor microenvironment have been developed. These represent a unique opportunity to ensure durable T cell activity upon vaccination. Here, we comprehensively review recent progress in mRNA-based neo-antigen vaccines, summarizing critical milestones that made it possible to bring the promise of therapeutic cancer vaccines within reach.


Molecular DNA dendron vaccines.

  • Max E Distler‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

A foundational principle of rational vaccinology is that vaccine structure plays a critical role in determining therapeutic efficacy, but in order to establish fundamental, effective, and translatable vaccine design parameters, a highly modular and well-defined platform is required. Herein, we report a DNA dendron vaccine, a molecular nanostructure that consists of an adjuvant DNA strand that splits into multiple DNA branches with a varied number of conjugated peptide antigens that is capable of dendritic cell uptake, immune activation, and potent cancer killing. We leveraged the well-defined architecture and chemical modularity of the DNA dendron to study structure-function relationships that dictate molecular vaccine efficacy, particularly regarding the delivery of immune-activating DNA sequences and antigenic peptides on a single chemical construct. We investigated how adjuvant and antigen placement and number impact dendron cellular uptake and immune activation, in vitro. These parameters also played a significant role in raising a potent and specific immune response against target cancer cells. By gaining this structural understanding of molecular vaccines, DNA dendrons successfully treated a mouse cervical human papillomavirus TC-1 cancer model, in vivo, where the vaccine structure defined its efficacy; the top-performing design effectively reduced tumor burden (<150 mm3 through day 30) and maintained 100% survival through 44 d after tumor inoculation.


Neurological sequelae of vaccines.

  • Lindsay S McAlpine‎ et al.
  • Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology‎
  • 2023‎

Vaccines are a safe and efficacious way to prevent a variety of infectious diseases. Over the course of their existence, vaccines have prevented immeasurable morbidity and mortality in humans. Typical symptoms of systemic immune activation are common after vaccines and may include local soreness, myalgias, nausea, and malaise. In the vast majority of cases, the severity of the infectious disease outweighs the risk of mild adverse reactions to vaccines. Rarely, vaccines may be associated with neurological sequela that ranges in severity from headache to transverse myelitis, acute disseminated encephalomyelitis, and Guillain-Barre syndrome (GBS). Often, a causal link cannot be confirmed, and it remains unclear if disease onset is directly related to a recent vaccination.


Vaccines for pandemic influenza.

  • Catherine J Luke‎ et al.
  • Emerging infectious diseases‎
  • 2006‎

Recent outbreaks of highly pathogenic avian influenza in Asia and associated human infections have led to a heightened level of awareness and preparation for a possible influenza pandemic. Vaccination is the best option by which spread of a pandemic virus could be prevented and severity of disease reduced. Production of live attenuated and inactivated vaccine seed viruses against avian influenza viruses, which have the potential to cause pandemics, and their testing in preclinical studies and clinical trials will establish the principles and ensure manufacturing experience that will be critical in the event of the emergence of such a virus into the human population. Studies of such vaccines will also add to our understanding of the biology of avian influenza viruses and their behavior in mammalian hosts.


Cytomegalovirus vaccines under clinical development.

  • Mark R Schleiss‎
  • Journal of virus eradication‎
  • 2016‎

Congenital cytomegalovirus (CMV) infection is the most common infectious cause of disability in newborn infants. CMV also causes serious disease in solid organ (SOT) and haematopoietic stem cell transplant (HSCT) recipients. In otherwise healthy children and adults, primary CMV infection rarely causes illness. However, even asymptomatic CMV infections may predispose an individual towards an increased risk of atherosclerosis, cancer and immune senescence over the life course, although such associations remain controversial. Thus, although a vaccine against congenital CMV infection would have the greatest public health impact and cost-effectiveness, arguably all populations could benefit from an effective immunisation against this virus. Currently there are no licensed CMV vaccines, but there is increased interest in developing and testing potential candidates, driven by the demonstration that a recombinant CMV glycoprotein B (gB) vaccine has some efficacy in prevention of infection in young women and adolescents, and in CMV-seronegative SOT recipients. In this review, the recent and current status of candidate CMV vaccines is discussed. Evolving concepts about proposed correlates of protective immunity in different target populations for CMV vaccination, and how these differences impact current clinical trials, are also reviewed.


Custom-made vaccines at speed.

  • Jane Bradbury‎
  • Drug discovery today‎
  • 2003‎

The concept of reverse genetics has enabled researchers to construct an experimental vaccine against a potential pandemic influenza strain in less than a month.


Making better influenza virus vaccines?

  • Peter Palese‎
  • Emerging infectious diseases‎
  • 2006‎

Killed and live influenza virus vaccines are effective in preventing and curbing the spread of disease, but new technologies such as reverse genetics could be used to improve them and to shorten the lengthy process of preparing vaccine seed viruses. By taking advantage of these new technologies, we could develop live vaccines that would be safe, cross-protective against variant strains, and require less virus per dose than conventional vaccines. Furthermore, pandemic vaccines against highly virulent strains such as the H5N1 virus can only be generated by reverse genetics techniques. Other technologic breakthroughs should result in effective adjuvants for use with killed and live vaccines, increasing the number of available doses. Finally, universal influenza virus vaccines seem to be within reach. These new strategies will be successful if they are supported by regulatory agencies and if a robust market for influenza virus vaccines against inter-pandemic and pandemic threats is made and sustained.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: