Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 7,935 papers

Molecular DNA dendron vaccines.

  • Max E Distler‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

A foundational principle of rational vaccinology is that vaccine structure plays a critical role in determining therapeutic efficacy, but in order to establish fundamental, effective, and translatable vaccine design parameters, a highly modular and well-defined platform is required. Herein, we report a DNA dendron vaccine, a molecular nanostructure that consists of an adjuvant DNA strand that splits into multiple DNA branches with a varied number of conjugated peptide antigens that is capable of dendritic cell uptake, immune activation, and potent cancer killing. We leveraged the well-defined architecture and chemical modularity of the DNA dendron to study structure-function relationships that dictate molecular vaccine efficacy, particularly regarding the delivery of immune-activating DNA sequences and antigenic peptides on a single chemical construct. We investigated how adjuvant and antigen placement and number impact dendron cellular uptake and immune activation, in vitro. These parameters also played a significant role in raising a potent and specific immune response against target cancer cells. By gaining this structural understanding of molecular vaccines, DNA dendrons successfully treated a mouse cervical human papillomavirus TC-1 cancer model, in vivo, where the vaccine structure defined its efficacy; the top-performing design effectively reduced tumor burden (<150 mm3 through day 30) and maintained 100% survival through 44 d after tumor inoculation.


DNA vaccines: prime time is now.

  • Ebony N Gary‎ et al.
  • Current opinion in immunology‎
  • 2020‎

Recently newer synthetic DNA vaccines have been rapidly advanced to clinical study and have demonstrated an impressive degree of immune potency and tolerability. Improvements in DNA delivery over prior needle and syringe approaches include jet delivery, gene gun delivery, among others. Among the most effective of these new delivery methods, advanced electroporation (EP), combined with other advances, induces robust humoral and cellular immunity in both preventative as well as therapeutic studies. Advancements in the design of the DNA inserts include leader sequence changes, RNA and codon optimizations, improved insert designs, increased concentrations of DNA, and skin delivery, appear to complement newer delivery strategies. These advances also provide a framework for the in vivo production of synthetic DNA biologics. In this review, we focus on recent studies of synthetic DNA vaccines in the clinic for the prevention or treatment of infectious diseases with a focus on adaptive electroporation for delivery, and briefly summarize novel preclinical data advancing the in vivo delivery of DNA-encoded antibody-like biologics.


Trial Watch: DNA vaccines for cancer therapy.

  • Jonathan Pol‎ et al.
  • Oncoimmunology‎
  • 2014‎

During the past 2 decades, the possibility that preparations capable of eliciting tumor-specific immune responses would mediate robust therapeutic effects in cancer patients has received renovated interest. In this context, several approaches to vaccinate cancer patients against their own malignancies have been conceived, including the administration of DNA constructs coding for one or more tumor-associated antigens (TAAs). Such DNA-based vaccines conceptually differ from other types of gene therapy in that they are not devised to directly kill cancer cells or sensitize them to the cytotoxic activity of a drug, but rather to elicit a tumor-specific immune response. In spite of an intense wave of preclinical development, the introduction of this immunotherapeutic paradigm into the clinical practice is facing difficulties. Indeed, while most DNA-based anticancer vaccines are well tolerated by cancer patients, they often fail to generate therapeutically relevant clinical responses. In this Trial Watch, we discuss the latest advances on the use of DNA-based vaccines in cancer therapy, discussing the literature that has been produced around this topic during the last 13 months as well as clinical studies that have been launched in the same time frame to assess the actual therapeutic potential of this intervention.


Trial watch: DNA vaccines for cancer therapy.

  • Laura Senovilla‎ et al.
  • Oncoimmunology‎
  • 2013‎

The foundation of modern vaccinology dates back to the 1790s, when the English physician Edward Jenner uncovered the tremendous medical potential of prophylactic vaccination. Jenner's work ignited a wave of nationwide vaccination campaigns abating the incidence of multiple life-threatening infectious diseases and culminating with the eradication of natural smallpox virus, which was definitively certified by the WHO in 1980. The possibility of using vaccines against cancer was first proposed at the end of the 19th century by Paul Ehrlich and William Coley. However, it was not until the 1990s that such a hypothesis began to be intensively investigated, following the realization that the immune system is not completely unresponsive to tumors and that neoplastic cells express immunogenic tumor-associated antigens (TAAs). Nowadays, anticancer vaccines are rapidly moving from the bench to the bedside, and a few prophylactic and therapeutic preparations have already been approved by FDA for use in humans. In this setting, one interesting approach is constituted by DNA vaccines, i.e., TAA-encoding circularized DNA constructs, often of bacterial origin, that are delivered to patients as such or by means of specific vectors, including (but not limited to) liposomal preparations, nanoparticles, bacteria and viruses. The administration of DNA vaccines is most often performed via the intramuscular or subcutaneous route and is expected to cause (1) the endogenous synthesis of the TAA by myocytes and/or resident antigen-presenting cells; (2) the presentation of TAA-derived peptides on the cell surface, in association with MHC class I molecules; and (3) the activation of potentially therapeutic tumor-specific immune responses. In this Trial Watch, we will summarize the results of recent clinical trials that have evaluated/are evaluating DNA vaccines as therapeutic interventions against cancer.


DNA vaccines: developing new strategies against cancer.

  • Daniela Fioretti‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2010‎

Due to their rapid and widespread development, DNA vaccines have entered into a variety of human clinical trials for vaccines against various diseases including cancer. Evidence that DNA vaccines are well tolerated and have an excellent safety profile proved to be of advantage as many clinical trials combines the first phase with the second, saving both time and money. It is clear from the results obtained in clinical trials that such DNA vaccines require much improvement in antigen expression and delivery methods to make them sufficiently effective in the clinic. Similarly, it is clear that additional strategies are required to activate effective immunity against poorly immunogenic tumor antigens. Engineering vaccine design for manipulating antigen presentation and processing pathways is one of the most important aspects that can be easily handled in the DNA vaccine technology. Several approaches have been investigated including DNA vaccine engineering, co-delivery of immunomodulatory molecules, safe routes of administration, prime-boost regimen and strategies to break the immunosuppressive networks mechanisms adopted by malignant cells to prevent immune cell function. Combined or single strategies to enhance the efficacy and immunogenicity of DNA vaccines are applied in completed and ongoing clinical trials, where the safety and tolerability of the DNA platform are substantiated. In this review on DNA vaccines, salient aspects on this topic going from basic research to the clinic are evaluated. Some representative DNA cancer vaccine studies are also discussed.


DNA vaccines against COVID-19: Perspectives and challenges.

  • Marcelle Moura Silveira‎ et al.
  • Life sciences‎
  • 2021‎

The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is associated with several fatal cases worldwide. The rapid spread of this pathogen and the increasing number of cases highlight the urgent development of vaccines. Among the technologies available for vaccine development, DNA vaccination is a promising alternative to conventional vaccines. Since its discovery in the 1990s, it has been of great interest because of its ability to elicit both humoral and cellular immune responses while showing relevant advantages regarding producibility, stability, and storage. This review aimed to summarize the current knowledge and advancements on DNA vaccines against COVID-19, particularly those in clinical trials.


Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery.

  • William Ho‎ et al.
  • Advanced healthcare materials‎
  • 2021‎

Nucleic acid vaccines are a method of immunization aiming to elicit immune responses akin to live attenuated vaccines. In this method, DNA or messenger RNA (mRNA) sequences are delivered to the body to generate proteins, which mimic disease antigens to stimulate the immune response. Advantages of nucleic acid vaccines include stimulation of both cell-mediated and humoral immunity, ease of design, rapid adaptability to changing pathogen strains, and customizable multiantigen vaccines. To combat the SARS-CoV-2 pandemic, and many other diseases, nucleic acid vaccines appear to be a promising method. However, aid is needed in delivering the fragile DNA/mRNA payload. Many delivery strategies have been developed to elicit effective immune stimulation, yet no nucleic acid vaccine has been FDA-approved for human use. Nanoparticles (NPs) are one of the top candidates to mediate successful DNA/mRNA vaccine delivery due to their unique properties, including unlimited possibilities for formulations, protective capacity, simultaneous loading, and delivery potential of multiple DNA/mRNA vaccines. This review will summarize the many varieties of novel NP formulations for DNA and mRNA vaccine delivery as well as give the reader a brief synopsis of NP vaccine clinical trials. Finally, the future perspectives and challenges for NP-mediated nucleic acid vaccines will be explored.


Efficient delivery of DNA vaccines using human papillomavirus pseudovirions.

  • S Peng‎ et al.
  • Gene therapy‎
  • 2010‎

We have examined non-replicative human papillomavirus (HPV) pseudovirions as an approach in the delivery of naked DNA vaccines without safety concerns associated with live viral vectors. In this study, we have generated HPV-16 pseudovirions encapsidating a DNA vaccine encoding the model antigen, ovalbumin (OVA) (HPV16-OVA pseudovirions). Vaccination with HPV16-OVA pseudovirions subcutaneously elicited significantly stronger OVA-specific CD8+ T-cell immune responses compared with OVA DNA vaccination via gene gun in a dose-dependent manner. We showed that a single amino acid mutation in the L2 minor capsid protein that eliminates the infectivity of HPV16-OVA pseudovirion significantly decreased the antigen-specific CD8+ T-cell responses in vaccinated mice. Furthermore, a subset of CD11c+ cells and B220+ cells in draining lymph nodes became labeled on vaccination with fluorescein isothiocyanate-labeled HPV16-OVA pseudovirions in injected mice. HPV pseudovirions were found to infect bone marrow-derived dendritic cells (BMDCs) in vitro. We also showed that pretreatment of HPV16-GFP pseudovirions with furin leads to enhanced HPV16-OVA pseudovirion infection of BMDCs and OVA antigen presentation. Our data suggest that DNA vaccines delivered using HPV pseudovirions represent an efficient delivery system that can potentially affect the field of DNA vaccine delivery.


DNA Vaccines Against Mycoplasma Elicit Humoral Immune Responses in Ostriches.

  • Martha Wium‎ et al.
  • Frontiers in immunology‎
  • 2019‎

In ostriches, the population densities resulting from intensive rearing increases susceptibility to pathogens such as mycoplasmas. In addition to good management practices, vaccination offers an attractive alternative for controlling mycoplasma infections in food animals, instead of using antibiotics, which often leave unacceptable residues. The use of live attenuated vaccines, however, carry the concern of reversion to virulence or genetic recombination with field strains. Currently there are no commercially available vaccines against ostrich-infecting mycoplasmas and this study therefore set out to develop and evaluate the use of a DNA vaccine against mycoplasma infections in ostriches using an OppA protein as antigen. To this end, the oppA gene of "Mycoplasma nasistruthionis sp. nov." str. Ms03 was cloned into two DNA vaccine expression vectors after codon correction by site-directed mutagenesis. Three-months-old ostriches were then vaccinated intramuscularly at different doses followed by a booster vaccination after 6 weeks. The ability of the DNA vaccines to elicit an anti-OppA antibody response was evaluated by ELISA using the recombinant OppA protein of Ms03 as coating antigen. A statistically significant anti-OppA antibody response could be detected after administration of a booster vaccination indicating that the OppA protein was successfully immunogenic. The responses were also both dose and vector dependent. In conclusion, the DNA vaccines were able to elicit an immune response in ostriches and can therefore be viewed as an option for the development of vaccines against mycoplasma infections.


Adipose tissue: a new target for electroporation-enhanced DNA vaccines.

  • P D Fisher‎ et al.
  • Gene therapy‎
  • 2017‎

DNA vaccines delivered using electroporation (EP) have had clinical success, but these EP methods generally utilize invasive needle electrodes. Here, we demonstrate the delivery and immunogenicity of a DNA vaccine into subcutaneous adipose tissue cells using noninvasive EP. Using finite element analysis, we predicted that plate electrodes, when oriented properly, could effectively concentrate the electric field within adipose tissue. In practice, these electrodes generated widespread gene expression persisting for at least 60 days in vivo within interscapular subcutaneous fat pads of guinea pigs. We then applied this adipose-EP protocol to deliver a DNA vaccine coding for an influenza antigen into guinea pigs. The resulting host immune responses elicited were of a similar magnitude to those achieved by skin delivery with EP. The onset of the humoral immune response was more rapid when the DNA dose was spread over multiple injection sites, and increasing the voltage of the EP device increased the magnitude of the immune response. This study supports further development of EP protocols delivering gene-based therapies to subcutaneous fat.


Cancer DNA vaccines: current preclinical and clinical developments and future perspectives.

  • Alessandra Lopes‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.


Protective Immunity Induced by TgMIC5 and TgMIC16 DNA Vaccines Against Toxoplasmosis.

  • Yu-Chao Zhu‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

Toxoplasma gondii is an obligate intracellular parasite, which is responsible for a widely distributed zoonosis. Effective vaccines against toxoplasmosis are necessary to protect the public health. The aim of this study is to evaluate the immune efficacy of DNA vaccines encoding TgMIC5 and TgMIC16 genes against T. gondii infection. The recombinant plasmid pVAX-MIC5 and pVAX-MIC16 were constructed and injected intramuscularly in mice. The specific immune responses and protection against challenge with T. gondii RH tachyzoites were evaluated by measuring the cytokine levels, serum antibody concentrations, lymphocyte proliferation, lymphocyte populations, and the survival time. The protection against challenge with the T. gondii RH tchyzoites and PRU cysts was examined by evaluation of the reduction in the brain cyst burden. The results indicated that immunized mice showed significantly increased levels of IgG, IFN-γ, IL-2, IL-12p70, and IL-12p40 and percentages of CD4+ and CD8+ T cells. Additionally, vaccination prolonged the mouse survival time and reduced brain cysts compared with controls. Mouse groups immunized with a two-gene cocktail of pVAX-MIC5 + pVAX-MIC16 were more protected than mouse groups immunized with a single gene of pVAX-MIC5 or pVAX-MIC16. These results demonstrate that TgMIC5 and TgMIC16 induce effective immunity against toxoplasmosis and may serve as a good vaccine candidate against T. gondii infection.


Modulation of Chitosan-TPP Nanoparticle Properties for Plasmid DNA Vaccines Delivery.

  • Renato Nunes‎ et al.
  • Polymers‎
  • 2022‎

Nucleic acid vaccines have become a revolutionary technology to give a fast, safe, cost-effective and efficient response against viral infections, such as SARS-CoV-2 or Human papillomavirus (HPV). However, to ensure their effectiveness, the development of adequate methods to protect, carry, and deliver nucleic acids is fundamental. In this work, nanoparticles (NPs) of chitosan (CS)-tripolyphosphate (TPP)-plasmid DNA (pDNA) were thoroughly modulated and characterized, by measuring the charge and size through dynamic light scattering (DLS) and morphology by scanning electron microscopy (SEM). Stability, cytotoxicity and cellular uptake of NPs were also evaluated. Finally, the effect of polyplexes on the expression of HPV E7 antigen in human fibroblast and RAW cells was investigated through polymerase chain reaction (PCR) and real-time PCR. The results showed NPs with a spherical/oval shape, narrow size distribution <180 nm and positive zeta potentials (>20 mV) and good stability after one month of storage at 4 °C in formulation buffer or when incubated in culture medium and trypsin. In vitro studies of NPs cytotoxicity revealed that the elimination of formulation buffers led to an improvement in the rate of cell viability. The E7 antigen transcription was also increased for NPs obtained with high pDNA concentration (60 μg/mL). The analyzed CS-TPP-pDNA polyplexes can offer a promising vehicle for nucleic acid vaccines, not only in the prevention or treatment of viral infections, but also to fight emergent and future pathogens.


Multiantigen pan-sarbecovirus DNA vaccines generate protective T cell immune responses.

  • Jeroen van Bergen‎ et al.
  • JCI insight‎
  • 2023‎

SARS-CoV-2 is the third zoonotic coronavirus to cause a major outbreak in humans in recent years, and many more SARS-like coronaviruses with pandemic potential are circulating in several animal species. Vaccines inducing T cell immunity against broadly conserved viral antigens may protect against hospitalization and death caused by outbreaks of such viruses. We report the design and preclinical testing of 2 T cell-based pan-sarbecovirus vaccines, based on conserved regions within viral proteins of sarbecovirus isolates of human and other carrier animals, like bats and pangolins. One vaccine (CoVAX_ORF1ab) encoded antigens derived from nonstructural proteins, and the other (CoVAX_MNS) encoded antigens from structural proteins. Both multiantigen DNA vaccines contained a large set of antigens shared across sarbecoviruses and were rich in predicted and experimentally validated human T cell epitopes. In mice, the multiantigen vaccines generated both CD8+ and CD4+ T cell responses to shared epitopes. Upon encounter of full-length spike antigen, CoVAX_MNS-induced CD4+ T cells were responsible for accelerated CD8+ T cell and IgG Ab responses specific to the incoming spike, irrespective of its sarbecovirus origin. Finally, both vaccines elicited partial protection against a lethal SARS-CoV-2 challenge in human angiotensin-converting enzyme 2-transgenic mice. These results support clinical testing of these universal sarbecovirus vaccines for pandemic preparedness.


Induction of food-specific IgG by Gene Gun-delivered DNA vaccines.

  • Johanna M Smeekens‎ et al.
  • Frontiers in allergy‎
  • 2022‎

Shellfish and tree nut allergies are among the most prevalent food allergies, now affecting 2%-3% and 1% of the US population, respectively. Currently, there are no approved therapies for shellfish or tree nut allergies, with strict avoidance being the standard of care. However, oral immunotherapy for peanut allergy and subcutaneous immunotherapy for environmental allergens are efficacious and lead to the production of allergen-specific IgG, which causes suppression of allergen effector cell degranulation. Since allergen-specific IgG is a desired response to alleviate IgE-mediated allergies, we tested transcutaneously-delivered DNA vaccines targeting shellfish and tree nut allergens for their ability to induce antigen-specific IgG, which would have therapeutic potential for food allergies.


Magnetic Nanovectors for the Development of DNA Blood-Stage Malaria Vaccines.

  • Fatin M Nawwab Al-Deen‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2017‎

DNA vaccines offer cost, flexibility, and stability advantages, but administered alone have limited immunogenicity. Previously, we identified optimal configurations of magnetic vectors comprising superparamagnetic iron oxide nanoparticles (SPIONs), polyethylenimine (PEI), and hyaluronic acid (HA) to deliver malaria DNA encoding Plasmodium yoelii (Py) merozoite surface protein MSP119 (SPIONs/PEI/DNA + HA gene complex) to dendritic cells and transfect them with high efficiency in vitro. Herein, we evaluate their immunogenicity in vivo by administering these potential vaccine complexes into BALB/c mice. The complexes induced antibodies against PyMSP119, with higher responses induced intraperitoneally than intramuscularly, and antibody levels further enhanced by applying an external magnetic field. The predominant IgG subclasses induced were IgG2a followed by IgG1 and IgG2b. The complexes further elicited high levels of interferon gamma (IFN-γ), and moderate levels of interleukin (IL)-4 and IL-17 antigen-specific splenocytes, indicating induction of T helper 1 (Th1), Th2, and Th17 cell mediated immunity. The ability of such DNA/nanoparticle complexes to induce cytophilic antibodies together with broad spectrum cellular immunity may benefit malaria vaccines.


A cGAS-Independent STING/IRF7 Pathway Mediates the Immunogenicity of DNA Vaccines.

  • John J Suschak‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2016‎

It has been known since the discovery of DNA vaccines >20 y ago that DNA vaccines can function as adjuvants. Our recent study reported the involvement of Aim2 as the sensor of DNA vaccines in eliciting Ag-specific Ab responses. Our findings indicated the presence of previously unrecognized innate immune response pathways in addition to the TLR9 pathway, which is mainly activated by the CpG motifs of DNA vaccines. Our data further demonstrated the requirement of type I IFN in DNA vaccine-induced immune responses via the Aim2 pathway, but the exact downstream molecular mechanism was not characterized. In the present study, we investigated the roles of the putative DNA sensor cyclic GMP-AMP synthase (cGas), as well as the downstream IFN regulatory factors (IRF) 3 and 7 in type I IFN induction and Ag-specific immune responses elicited by DNA vaccination. Our results showed that DNA vaccine-induced, Irf7-dependent signaling, as part of the Sting pathway, was critical for generation of both innate cytokine signaling and Ag-specific B and T cell responses. In contrast, Irf3 was not as critical as expected in this pathway and, more surprisingly, immune responses elicited by DNA vaccines were not cGas-dependent in vivo. Data from this study provide more details on the innate immune mechanisms involved in DNA vaccination and further enrich our understanding on the potential utility of DNA vaccines in generating Ag-specific immune responses.


Comparative analysis of enzymatically produced novel linear DNA constructs with plasmids for use as DNA vaccines.

  • A A Walters‎ et al.
  • Gene therapy‎
  • 2014‎

The use of DNA to deliver vaccine antigens offers many advantages, including ease of manufacture and cost. However, most DNA vaccines are plasmids and must be grown in bacterial culture, necessitating elements that are either unnecessary for effective gene delivery (for example, bacterial origins of replication) or undesirable (for example, antibiotic resistance genes). Removing these elements may improve the safety profile of DNA for the delivery of vaccines. Here, we describe a novel, double-stranded, linear DNA construct produced by an enzymatic process that solely encodes an antigen expression cassette, comprising antigen, promoter, polyA tail and telomeric ends. We compared these constructs (called 'Doggybones' because of their shape) with conventional plasmid DNA. Using luciferase-expressing constructs, we demonstrated that expression levels were equivalent between Doggybones and plasmids both in vitro and in vivo. When mice were immunized with DNA constructs expressing the HIV envelope protein gp140, equivalent humoral and cellular responses were induced. Immunizations with either construct type expressing hemagluttinin were protective against H1N1 influenza challenge. This is the first example of an effective DNA vaccine, which can be produced on a large scale by enzymatic processes.


A brief review on DNA vaccines in the era of COVID-19.

  • Maryam Shafaati‎ et al.
  • Future virology‎
  • 2021‎

This article provides a brief overview of DNA vaccines. First, the basic DNA vaccine design strategies are described, then specific issues related to the industrial production of DNA vaccines are discussed, including the production and purification of DNA products such as plasmid DNA, minicircle DNA, minimalistic, immunologically defined gene expression (MIDGE) and Doggybone™. The use of adjuvants to enhance the immunogenicity of DNA vaccines is then discussed. In addition, different delivery routes and several physical and chemical methods to increase the efficacy of DNA delivery into cells are explained. Recent preclinical and clinical trials of DNA vaccines for COVID-19 are then summarized. Lastly, the advantages and obstacles of DNA vaccines are discussed.


B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines.

  • Viswa Teja Colluru‎ et al.
  • Oncotarget‎
  • 2016‎

In spite of remarkable preclinical efficacy, DNA vaccination has demonstrated low immunogenicity in humans. While efforts have focused on increasing cross-presentation of DNA-encoded antigens, efforts to increase DNA vaccine immunogenicity by targeting direct presentation have remained mostly unexplored. In these studies, we compared the ability of different APCs to present antigen to T cells after simple co-culture with plasmid DNA. We found that human primary peripheral B lymphocytes, and not monocytes or in vitro derived dendritic cells (DCs), were able to efficiently encode antigen mRNA and expand cognate tumor antigen-specific CD8 T cells ex vivo. Similarly, murine B lymphocytes co-cultured with plasmid DNA, and not DCs, were able to prime antigen-specific T cells in vivo. Moreover, B lymphocyte-mediated presentation of plasmid antigen led to greater Th1-biased immunity and was sufficient to elicit an anti-tumor effect in vivo. Surprisingly, increasing plasmid presentation by B cells, and not cross presentation of peptides by DCs, further augmented traditional plasmid vaccination. Together, these data suggest that targeting plasmid DNA to B lymphocytes, for example through transfer of ex vivo plasmidloaded B cells, may be novel means to achieve greater T cell immunity from DNA vaccines.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: