Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 218 papers

Repression-free utrophin-A 5'UTR variants.

  • Debasish Malik‎ et al.
  • Molecular biology research communications‎
  • 2019‎

Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be achieved if we understand regulatory mechanisms behind its expression. Utrophin-A 5'UTR mediated repression of translation was reported earlier. In this article, we present evidences of two transcript variants of utrophin-A that do not confer repression to the downstream reporter ORF in mouse myoblast C2C12 cells. These repression-free variants may be targeted for utrophin upregulation.


Translational regulation of utrophin by miRNAs.

  • Utpal Basu‎ et al.
  • PloS one‎
  • 2011‎

Utrophin is the autosomal homolog of dystrophin, the product of the Duchenne Muscular Dystrophy (DMD) locus. Its regulation is of therapeutic interest as its overexpression can compensate for dystrophin's absence in animal models of DMD. The tissue distribution and transcriptional regulation of utrophin have been characterized extensively, and more recently translational control mechanisms that may underlie its complex expression patterns have begun to be identified.


Subtle neuromuscular defects in utrophin-deficient mice.

  • R M Grady‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Utrophin is a large cytoskeletal protein that is homologous to dystrophin, the protein mutated in Duchenne and Becker muscular dystrophy. In skeletal muscle, dystrophin is broadly distributed along the sarcolemma whereas utrophin is concentrated at the neuromuscular junction. This differential localization, along with studies on cultured cells, led to the suggestion that utrophin is required for synaptic differentiation. In addition, utrophin is present in numerous nonmuscle cells, suggesting that it may have a more generalized role in the maintenance of cellular integrity. To test these hypotheses we generated and characterized utrophin-deficient mutant mice. These mutant mice were normal in appearance and behavior and showed no obvious defects in muscle or nonmuscle tissue. Detailed analysis, however, revealed that the density of acetylcholine receptors and the number of junctional folds were reduced at the neuromuscular junctions in utrophin-deficient skeletal muscle. Despite these subtle derangements, the overall structure of the mutant synapse was qualitatively normal, and the specialized characteristics of the dystrophin-associated protein complex were preserved at the mutant neuromuscular junction. These results point to a predominant role for other molecules in the differentiation and maintenance of the postsynaptic membrane.


Muscle structure influences utrophin expression in mdx mice.

  • Glen B Banks‎ et al.
  • PLoS genetics‎
  • 2014‎

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin-/- mice. An ∼ 2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼ 91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin-/-, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD.


Utrophin Compensates dystrophin Loss during Mouse Spermatogenesis.

  • Hung-Chih Chen‎ et al.
  • Scientific reports‎
  • 2017‎

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder resulting from mutations in the dystrophin gene. The mdx/utrn -/- mouse, lacking in both dystrophin and its autosomal homologue utrophin, is commonly used to model the clinical symptoms of DMD. Interestingly, these mice are infertile but the mechanisms underlying this phenomenon remain unclear. Using dystrophin deficient mdx mouse and utrophin haplodeficient mdx/utrn +/- mouse models, we demonstrate the contribution of Dp427 (full-length dystrophin) and utrophin to testis and epididymis development, as well as spermatogenesis. We show that Dp427 deficiency disturbed the balance between proliferation and apoptosis of germ cells during spermatogenesis, which was further disrupted with utrophin haplodeficiency, deciphering a compensatory role of utrophin for dystrophin in the male reproductive system. In the spermatozoa, we have found a compensatory response of utrophin to dystrophin deficiency - namely the upregulation and relocation of utrophin to the flagellar midpiece. This study demonstrates the contribution of Dp427 and utrophin in male fertility, suggesting a potential pathology in DMD patients.


Anisomycin Activates Utrophin Upregulation Through a p38 Signaling Pathway.

  • Jeremiah Hadwen‎ et al.
  • Clinical and translational science‎
  • 2018‎

Duchenne muscular dystrophy is a recessive X-linked disease characterized by progressive muscle wasting; cardiac or respiratory failure causes death in most patients by the third decade.  The disease is caused by mutations in the dystrophin gene that lead to a loss of functional dystrophin protein. Although there are currently few treatments for Duchenne muscular dystrophy, previous reports have shown that upregulating the dystrophin paralog utrophin in Duchenne muscular dystrophy mouse models is a promising therapeutic strategy. We conducted in silico mining of the Connectivity Map database for utrophin-inducing agents, identifying the p38-activating antibiotic anisomycin. Treatments of C2C12, undifferentiated murine myoblasts, and mdx primary myoblasts with anisomycin conferred increases in utrophin protein levels through p38 pathway activation.  Anisomycin also induced utrophin protein levels in the diaphragm of mdx mice.  Our study shows that repositioning small molecules such as anisomycin may prove to have Duchenne muscular dystrophy clinical utility.


Sarcospan reduces dystrophic pathology: stabilization of the utrophin-glycoprotein complex.

  • Angela K Peter‎ et al.
  • The Journal of cell biology‎
  • 2008‎

Mutations in the dystrophin gene cause Duchenne muscular dystrophy and result in the loss of dystrophin and the entire dystrophin-glycoprotein complex (DGC) from the sarcolemma. We show that sarcospan (SSPN), a unique tetraspanin-like component of the DGC, ameliorates muscular dystrophy in dystrophin-deficient mdx mice. SSPN stabilizes the sarcolemma by increasing levels of the utrophin-glycoprotein complex (UGC) at the extrasynaptic membrane to compensate for the loss of dystrophin. Utrophin is normally restricted to the neuromuscular junction, where it replaces dystrophin to form a functionally analogous complex. SSPN directly interacts with the UGC and functions to stabilize utrophin protein without increasing utrophin transcription. These findings reveal the importance of protein stability in the prevention of muscular dystrophy and may impact the future design of therapeutics for muscular dystrophies.


Utrophin-dystroglycan complex in membranes of adherent cultured cells.

  • M James‎ et al.
  • Cell motility and the cytoskeleton‎
  • 1996‎

In skeletal muscle, dystrophin binds to an oligomeric, transmembrane complex (DAGc; dystrophin-associated glycoprotein complex) which interacts with laminin in the extracellular matrix. We now present biochemical evidence for an association between utrophin (dystrophin-related protein, DRP) and a major DAGc component, beta-dystroglycan (43DAG) in cultured cell lines which contain little if any dystrophin. We have shown also that utrophin and beta-dystroglycan co-localise at or near the plasma membrane and that they co-sediment in large complexes on sucrose density gradients. On the lower plasma membrane, in contact with the substratum, part of the utrophin and beta-dystroglycan staining co-localised with alpha-actinin in a punctate distribution outside classical vinculin-rich focal adhesions. beta-dystroglycan, utrophin, syntrophin (59DAP), and alpha-actinin were found in all adhesion-competent cell lines studied, but levels of the last three proteins were greatly reduced in myeloma cells, which cannot readily attach to substrata. Possible roles for utrophin in cultured cells are considered in the light of recent evidence for involvement of utrophin-glycoprotein complexes in muscle in signal transduction and recruitment of acetylcholine receptors to neuromuscular junctions.


Functional substitution by TAT-utrophin in dystrophin-deficient mice.

  • Kevin J Sonnemann‎ et al.
  • PLoS medicine‎
  • 2009‎

The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or DeltaR4-21 "micro" utrophin (muUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.


Distinct mechanical properties in homologous spectrin-like repeats of utrophin.

  • Sivaraman Rajaganapathy‎ et al.
  • Scientific reports‎
  • 2019‎

Patients with Duchenne muscular dystrophy (DMD) lack the protein dystrophin, which is a critical molecular component of the dystrophin-glycoprotein complex (DGC). Dystrophin is hypothesized to function as a molecular shock absorber that mechanically stabilizes the sarcolemma of striated muscle through interaction with the cortical actin cytoskeleton via its N-terminal half and with the transmembrane protein β-dystroglycan via its C-terminal region. Utrophin is a fetal homologue of dystrophin that can subserve many dystrophin functions and is therefore under active investigation as a dystrophin replacement therapy for DMD. Here, we report the first mechanical characterization of utrophin using atomic force microscopy (AFM). Our data indicate that the mechanical properties of spectrin-like repeats in utrophin are more in line with the PEVK and Ig-like repeats of titin rather than those reported for repeats in spectrin or dystrophin. Moreover, we measured markedly different unfolding characteristics for spectrin repeats within the N-terminal actin-binding half of utrophin compared to those in the C-terminal dystroglycan-binding half, even though they exhibit identical thermal denaturation profiles. Our results demonstrate dramatic differences in the mechanical properties of structurally homologous utrophin constructs and suggest that utrophin may function as a stiff elastic element in series with titin at the myotendinous junction.


Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction.

  • Manoj K Mishra‎ et al.
  • PloS one‎
  • 2017‎

Duchenne muscular dystrophy (DMD) is a fatal genetic disease caused by an absence of the 427kD muscle-specific dystrophin isoform. Utrophin is the autosomal homolog of dystrophin and when overexpressed, can compensate for the absence of dystrophin and rescue the dystrophic phenotype of the mdx mouse model of DMD. Utrophin is subject to miRNA mediated repression by several miRNAs including let-7c. Inhibition of utrophin: let-7c interaction is predicted to 'repress the repression' and increase utrophin expression. We developed and tested the ability of an oligonucleotide, composed of 2'-O-methyl modified bases on a phosphorothioate backbone, to anneal to the utrophin 3'UTR and prevent let-7c miRNA binding, thereby upregulating utrophin expression and improving the dystrophic phenotype in vivo. Suppression of utrophin: let-7c interaction using bi-weekly intraperitoneal injections of let7 site blocking oligonucleotides (SBOs) for 1 month in the mdx mouse model for DMD, led to increased utrophin expression along with improved muscle histology, decreased fibrosis and increased specific force. The functional improvement of dystrophic muscle achieved using let7-SBOs suggests a novel utrophin upregulation-based therapeutic strategy for DMD.


Utrophin influences mitochondrial pathology and oxidative stress in dystrophic muscle.

  • Tahnee L Kennedy‎ et al.
  • Skeletal muscle‎
  • 2017‎

Duchenne muscular dystrophy (DMD) is a lethal X-linked muscle wasting disorder caused by the absence of dystrophin, a large cytoskeletal muscle protein. Increasing the levels of the dystrophin-related-protein utrophin is a highly promising therapy for DMD and has been shown to improve pathology in dystrophin-deficient mice. One contributing factor to muscle wasting in DMD is mitochondrial pathology that contributes to oxidative stress and propagates muscle damage. The purpose of this study was to assess whether utrophin could attenuate mitochondria pathology and oxidative stress.


An epitope structure for the C-terminal domain of dystrophin and utrophin.

  • G E Morris‎ et al.
  • Biochemistry‎
  • 1998‎

The muscular dystrophy protein, dystrophin, and the closely related protein, utrophin, are large cytoskeletal proteins which link actin microfilaments to the plasma membrane. A panel of 38 monoclonal antibodies (mAbs) has been produced against the C-terminal domains of dystrophin and utrophin. This domain interacts with both dystrobrevins, via their "leucine zipper" coiled-coil helices, and syntrophins, adaptor proteins which also interact with nitric oxide synthetase and transmembrane sodium channels. The amino acid sequences recognized by the mAbs have now been identified using a variety of epitope mapping techniques, including fragmentation by transposon mutagenesis, synthetic peptides, phage-displayed peptide libraries, and mutant dystrophins expressed in transgenic mice. In addition to defining antibody recognition sites, mapping was sufficiently precise to provide structural information, since individual amino acids accessible on the surface of the native protein were identified in many cases. In two regions of the domain, short linear epitopes were found in proline-rich sequences which may form surface loops, turns, or linkers, but these were separated by a third region which contained mainly conformational epitopes. The results are consistent with a loose and flexible structure for much of the C-terminal domain, especially around the highly conserved second leucine zipper or coiled-coil helix (CC-H2), but there is evidence for denaturation-resistant tertiary structure in the syntrophin-binding region and the first coiled-coil helix (CC-H1).


Drug discovery for Duchenne muscular dystrophy via utrophin promoter activation screening.

  • Catherine Moorwood‎ et al.
  • PloS one‎
  • 2011‎

Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin, a muscle cytoskeletal protein. Utrophin is a homologue of dystrophin that can functionally compensate for its absence when expressed at increased levels in the myofibre, as shown by studies in dystrophin-deficient mice. Utrophin upregulation is therefore a promising therapeutic approach for DMD. The use of a small, drug-like molecule to achieve utrophin upregulation offers obvious advantages in terms of delivery and bioavailability. Furthermore, much of the time and expense involved in the development of a new drug can be eliminated by screening molecules that are already approved for clinical use.


Postsynaptic abnormalities at the neuromuscular junctions of utrophin-deficient mice.

  • A E Deconinck‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Utrophin is a dystrophin-related cytoskeletal protein expressed in many tissues. It is thought to link F-actin in the internal cytoskeleton to a transmembrane protein complex similar to the dystrophin protein complex (DPC). At the adult neuromuscular junction (NMJ), utrophin is precisely colocalized with acetylcholine receptors (AChRs) and recent studies have suggested a role for utrophin in AChR cluster formation or maintenance during NMJ differentiation. We have disrupted utrophin expression by gene targeting in the mouse. Such mice have no utrophin detectable by Western blotting or immunocytochemistry. Utrophin-deficient mice are healthy and show no signs of weakness. However, their NMJs have reduced numbers of AChRs (alpha-bungarotoxin [alpha-BgTx] binding reduced to approximately 60% normal) and decreased postsynaptic folding, though only minimal electrophysiological changes. Utrophin is thus not essential for AChR clustering at the NMJ but may act as a component of the postsynaptic cytoskeleton, contributing to the development or maintenance of the postsynaptic folds. Defects of utrophin could underlie some forms of congenital myasthenic syndrome in which a reduction of postsynaptic folds is observed.


UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation.

  • Annalisa Onori‎ et al.
  • BMC molecular biology‎
  • 2013‎

Duchenne muscular dystrophy (DMD) is the most common X-linked muscle degenerative disease and it is due to the absence of the cytoskeletal protein dystrophin. Currently there is no effective treatment for DMD. Among the different strategies for achieving a functional recovery of the dystrophic muscle, the upregulation of the dystrophin-related gene utrophin is becoming more and more feasible.


Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy.

  • A E Deconinck‎ et al.
  • Cell‎
  • 1997‎

The absence of dystrophin at the muscle membrane leads to Duchenne muscular dystrophy (DMD), a severe muscle-wasting disease that is inevitably fatal in early adulthood. In contrast, dystrophin-deficient mdx mice appear physically normal despite their underlying muscle pathology. We describe mice deficient for both dystrophin and the dystrophin-related protein utrophin. These mice show many signs typical of DMD in humans: they show severe progressive muscular dystrophy that results in premature death, they have ultrastructural neuromuscular and myotendinous junction abnormalities, and they aberrantly coexpress myosin heavy chain isoforms within a fiber. The data suggest that utrophin and dystrophin have complementing roles in normal functional or developmental pathways in muscle. Detailed study of these mice should provide novel insights into the pathogenesis of DMD and provide an improved model for rapid evaluation of gene therapy strategies.


Identification of serum protein biomarkers for utrophin based DMD therapy.

  • Simon Guiraud‎ et al.
  • Scientific reports‎
  • 2017‎

Despite promising therapeutic avenues, there is currently no effective treatment for Duchenne muscular dystrophy (DMD), a lethal monogenic disorder caused by the loss of the large cytoskeletal protein, dystrophin. A highly promising approach to therapy, applicable to all DMD patients irrespective to their genetic defect, is to modulate utrophin, a functional paralogue of dystrophin, able to compensate for the primary defects of DMD restoring sarcolemmal stability. One of the major difficulties in assessing the effectiveness of therapeutic strategies is to define appropriate outcome measures. In the present study, we utilised an aptamer based proteomics approach to profile 1,310 proteins in plasma of wild-type, mdx and Fiona (mdx overexpressing utrophin) mice. Comparison of the C57 and mdx sera revealed 83 proteins with statistically significant >2 fold changes in dystrophic serum abundance. A large majority of previously described biomarkers (ANP32B, THBS4, CAMK2A/B/D, CYCS, CAPNI) were normalised towards wild-type levels in Fiona animals. This work also identified potential mdx markers specific to increased utrophin (DUS3, TPI1) and highlights novel mdx biomarkers (GITR, MYBPC1, HSP60, SIRT2, SMAD3, CNTN1). We define a panel of putative protein mdx biomarkers to evaluate utrophin based strategies which may help to accelerate their translation to the clinic.


RhoA leads to up-regulation and relocalization of utrophin in muscle fibers.

  • Cécile Gauthier-Rouvière‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

Up-regulation of utrophin, a homolog of dystrophin, is known to ameliorate the dystrophic phenotype in animal models of Duchenne muscular dystrophy. We have previously demonstrated that the active form of RhoA (RhoAV14) increases the expression of utrophin and its localization at the plasma membrane in cultured myoblasts. In this paper, we ask whether RhoAV14 can up-regulate utrophin also in mice. A plasmid encoding for RhoAV14 was injected into skeletal muscles followed by electroporation. Muscles expressing RhoAV14 were analyzed by Western-immunoblotting, real time PCR amplification and immunohistochemistry. We found that RhoAV14 increased utrophin protein expression and distribution specifically at the plasma membrane in muscle fibers without any effect on utrophin transcription. Utrophin up-regulation, uncoupled from that of its mRNA, has been previously observed in pathological processes and in normal regenerating conditions.


Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration.

  • Jamie L Marshall‎ et al.
  • The Journal of cell biology‎
  • 2012‎

Utrophin is normally confined to the neuromuscular junction (NMJ) in adult muscle and partially compensates for the loss of dystrophin in mdx mice. We show that Akt signaling and utrophin levels were diminished in sarcospan (SSPN)-deficient muscle. By creating several transgenic and knockout mice, we demonstrate that SSPN regulates Akt signaling to control utrophin expression. SSPN determined α-dystroglycan (α-DG) glycosylation by affecting levels of the NMJ-specific glycosyltransferase Galgt2. After cardiotoxin (CTX) injury, regenerating myofibers express utrophin and Galgt2-modified α-DG around the sarcolemma. SSPN-null mice displayed delayed differentiation after CTX injury caused by loss of utrophin and Akt signaling. Treatment of SSPN-null mice with viral Akt increased utrophin and restored muscle repair after injury, revealing an important role for the SSPN-Akt-utrophin signaling axis in regeneration. SSPN improved cell surface expression of utrophin by increasing transportation of utrophin and DG from endoplasmic reticulum/Golgi membranes. Our experiments reveal functions of utrophin in regeneration and new pathways that regulate utrophin expression at the cell surface.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: