Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 402 papers

Uncharged isocoumarin-based inhibitors of urokinase-type plasminogen activator.

  • Justin J Heynekamp‎ et al.
  • BMC chemical biology‎
  • 2006‎

Urokinase-type plasminogen activator (uPA) plays a major role in extracellular proteolytic events associated with tumor cell growth, migration and angiogenesis. Consequently, uPA is an attractive target for the development of small molecule active site inhibitors. Most of the recent drug development programs aimed at nonpeptidic inhibitors targeted at uPA have focused on arginino mimetics containing amidine or guanidine functional groups attached to aromatic or heterocyclic scaffolds. There is a general problem of limited bioavailability of these charged inhibitors. In the present study, uPA inhibitors were designed on an isocoumarin scaffold containing uncharged substituents.


Plasminogen Activator Inhibitor-1 Protects Mice Against Cardiac Fibrosis by Inhibiting Urokinase-type Plasminogen Activator-mediated Plasminogen Activation.

  • Kamlesh K Gupta‎ et al.
  • Scientific reports‎
  • 2017‎

Plasminogen activator inhibitor-1 (PAI-1) is known to protect mice against cardiac fibrosis. It has been speculated that PAI-1 may regulate cardiac fibrosis by inactivating urokinase-type plasminogen activator (uPA) and ultimately plasmin (Pm) generation. However, the in vivo role of PAI-1 in inactivating uPA and limiting the generation of Pm during cardiac fibrosis remains to be established. The objective of this study was to determine if the cardioprotective effect of PAI-1 is mediated through its ability to directly regulate urokinase -mediated activation of plasminogen (Pg). An Angiotensin II (AngII)-aldosterone (Ald) infusion mouse model of hypertension was utilised in this study. Four weeks after AngII-Ald infusion, PAI-1-deficient (PAI-1-/-) mice developed severe cardiac fibrosis. However, a marked reduction in cardiac fibrosis was observed in PAI-1-/-/uPA-/- double knockout mice that was associated with reduced inflammation, lower expression levels of TGF-β and proteases associated with tissue remodeling, and diminished Smad2 signaling. Moreover, total ablation of cardiac fibrosis was observed in PAI-1-/- mice that express inactive plasmin (Pm) but normal levels of zymogen Pg (PAI-1-/-/PgS743A/S743A). Our findings indicate that PAI-1 protects mice from hypertension-induced cardiac fibrosis by inhibiting the generation of active Pm.


Urokinase-type plasminogen activator blockade ameliorates experimental colitis in mice.

  • Yoshifumi Kida‎ et al.
  • Scientific reports‎
  • 2023‎

Although several angiogenesis-related factors are reportedly involved in the pathogenesis of ulcerative colitis (UC), the mechanisms by which they contribute to disease are unclear. We first examined the expression of angiogenesis-related factors in inflamed colorectal tissue of UC patients using antibody array, and identified the 5 factors with highest expression, which included matrix metalloproteinase-8, urokinase-type plasminogen activator (uPA), angiostatin/plasminogen, hepatocyte growth factor and endoglin. Subsequent real-time PCR experiments using additional colorectal tissues revealed that uPA mRNA levels were significantly higher in inflamed tissues than in non-inflamed tissues, and significantly correlated with the severity of UC. Mirror section immunohistochemistry revealed that uPA was expressed in the neutrophils of inflamed colorectal tissues. We administered dextran sulfate sodium (DSS) in drinking water to uPA knockout (uPA-/-) mice, and found that the disease activity index in uPA-/- mice was marginally lower and the histological score in uPA-/- mice was significantly lower than those in wild-type mice, suggesting the importance of uPA in colitis. When an uPA-selective inhibitor, UK122, was administered to DSS-treated C57BL6J mice, the disease activity index and histological score in those mice were significantly lower compared with control mice. Multiple cytokine/chemokine assay using colorectal tissues from uPA-/- and UK122-treated mice revealed significantly lowered level of RANTES. In conclusion, uPA was highly expressed in neutrophils of the inflamed mucosa of UC patients, and the expression level correlated with the severity of UC. Genetic uPA deletion or pharmacological uPA blockade significantly ameliorated colitis in mice, concomitant with downregulation of RANTES.


The autoactivation of human single-chain urokinase-type plasminogen activator (uPA).

  • Constanza Torres-Paris‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Most serine proteases are synthesized as inactive zymogens that are activated by cleavage by another protease in a tightly regulated mechanism. The urokinase-type plasminogen activator (uPA) and plasmin cleave and activate each other, constituting a positive feedback loop. How this mutual activation cycle begins has remained a mystery. We used hydrogen deuterium exchange mass spectrometry to characterize the dynamic differences between the inactive single-chain uPA (scuPA) and its active form two-chain uPA (tcuPA). The results show that the C-terminal β-barrel and the area around the new N terminus have significantly reduced dynamics in tcuPA as compared with scuPA. We also show that the zymogen scuPA is inactive but can, upon storage, become active in the absence of external proteases. In addition to plasmin, the tcuPA can activate scuPA by cleavage at K158, a process called autoactivation. Unexpectedly, tcuPA can cleave at position 158 even when this site is mutated. TcuPA can also cleave scuPA after K135 or K136 in the disordered linker, which generates the soluble protease domain of uPA. Plasmin cleaves scuPA exclusively after K158 and at a faster rate than tcuPA. We propose a mechanism by which the uPA receptor dimerization could promote autoactivation of scuPA on cell surfaces. These results resolve long-standing controversies in the literature surrounding the mechanism of uPA activation.


Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator.

  • Jakub Zbigniew Kaczmarek‎ et al.
  • Molecular immunology‎
  • 2015‎

Urokinase-type plasminogen activator (uPA) is a trypsin-like serine protease that plays a vital role in extracellular conversion of inactive plasminogen into catalytically active plasmin. Activated plasmin facilitates the release of several proteolytic enzymes, which control processes like pericellular proteolysis and remodeling of ECM. uPA and the receptor uPAR, are overexpressed in a number of malignant tumours and uPA/uPAR play major roles in adhesion, migration, invasion and metastasis of cancer cells. Elevated levels of uPA have been reported as a risk biomarker for disease relapse, increased cancer malignancy and poor survival prognosis. For these reasons uPA is considered an important target for anticancer drug therapy. In this study we isolated two camel single domain antibodies (nanobodies) from a naïve library by phage display. The nanobody sequences were sequence-optimized for Escherichia coli expression, cloned into the pET22-B(+) vector system, expressed in BL-21 cells and purified from the periplasmic fraction by IMAC. ELISA tests demonstrated that the purified nanobodies were specific for uPA when tested towards other trypsin-like serine proteases. The apparent affinities of the nanobodies were determined by competitive ELISA to 80 nM and 522 nM, respectively. The best binder did not inhibit uPA (nAb-C3), however the lowest affinity binder (nAb-C8) was able to inhibit the uPA-mediated cleavage of the substrate S-2444. The results validate the naïve library as a resource for retrieval of relevant lead molecules and the novel uPA-nanobodies can be useful pharmacological tools to study uPA structure-function relationships.


Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator.

  • Tobias Kromann-Hansen‎ et al.
  • Scientific reports‎
  • 2017‎

Although trypsin-like serine proteases have flexible surface-exposed loops and are known to adopt higher and lower activity conformations, structural determinants for the different conformations have remained largely obscure. The trypsin-like serine protease, urokinase-type plasminogen activator (uPA), is central in tissue remodeling processes and also strongly implicated in tumor metastasis. We solved five X-ray crystal structures of murine uPA (muPA) in the absence and presence of allosteric molecules and/or substrate-like molecules. The structure of unbound muPA revealed an unsuspected non-chymotrypsin-like protease conformation in which two β-strands in the core of the protease domain undergoes a major antiparallel-to-parallel conformational transition. We next isolated two anti-muPA nanobodies; an active-site binding nanobody and an allosteric nanobody. Crystal structures of the muPA:nanobody complexes and hydrogen-deuterium exchange mass spectrometry revealed molecular insights about molecular factors controlling the antiparallel-to-parallel equilibrium in muPA. Together with muPA activity assays, the data provide valuable insights into regulatory mechanisms and conformational flexibility of uPA and trypsin-like serine proteases in general.


Urokinase-type plasminogen activator deficiency promotes neoplasmatogenesis in the colon of mice.

  • Elisavet Karamanavi‎ et al.
  • Translational oncology‎
  • 2014‎

Urokinase-type plasminogen activator (uPA) participates in cancer-related biologic processes, such as wound healing and inflammation. The present study aimed to investigate the effect of uPA deficiency on the long-term outcome of early life episodes of dextran sodium sulfate (DSS)-induced colitis in mice. Wild-type (WT) and uPA-deficient (uPA(-/-)) BALB/c mice were treated with DSS or remained untreated. Mice were necropsied either 1 week or 7 months after DSS treatment. Colon samples were analyzed by histopathology, immunohistochemistry, ELISA, and real-time polymerase chain reaction. At 7 months, with no colitis evident, half of the uPA(-/-) mice had large colonic polypoid adenomas, whereas WT mice did not. One week after DSS treatment, there were typical DSS-induced colitis lesions in both WT and uPA(-/-) mice. The affected colon of uPA(-/-) mice, however, had features of delayed ulcer re-epithelialization and dysplastic lesions of higher grade developing on the basis of a significantly altered mucosal inflammatory milieu. The later was characterized by more neutrophils and macrophages, less regulatory T cells (Treg), significantly upregulated cytokines, including interleukin-6 (IL-6), IL-17, tumor necrosis factor-α, and IL-10, and lower levels of active transforming growth factor-β1 (TGF-β1) compared to WT mice. Dysfunctional Treg, more robust protumorigenic inflammatory events, and an inherited inability to produce adequate amounts of extracellular active TGF-β1 due to uPA deficiency are interlinked as probable explanations for the inflammatory-induced neoplasmatogenesis in the colon of uPA(-/-) mice.


A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease.

  • Joann M Spinale‎ et al.
  • Kidney international‎
  • 2015‎

It has been suggested that soluble urokinase receptor (suPAR) is a causative circulating factor for and a biomarker of focal and segmental glomerulosclerosis (FSGS). Here we undertook validation of these assumptions in both mouse and human models. Injection of recombinant suPAR in wild-type mice did not induce proteinuria within 24 h. Moreover, a disease phenotype was not seen in an inducible transgenic mouse model that maintained elevated suPAR concentrations for 6 weeks. Plasma and urine suPAR concentrations were evaluated as clinical biomarkers in 241 patients with glomerular disease from the prospective, longitudinal multicenter observational NEPTUNE cohort. The serum suPAR concentration at baseline inversely correlated with estimated glomerular filtration rate (eGFR) and the urine suPAR/creatinine ratio positively correlated with the urine protein/creatinine ratio. After adjusting for eGFR and urine protein, neither the serum nor urine suPAR level was an independent predictor of FSGS histopathology. A multivariable mixed-effects model of longitudinal data evaluated the association between the change in serum suPAR concentration from baseline with eGFR. After adjusting for baseline suPAR concentration, age, gender, proteinuria, and time, the change in suPAR from baseline was associated with eGFR, but this association was not different for patients with FSGS as compared with other diagnoses. Thus these results do not support a pathological role for suPAR in FSGS.


A role for the urokinase-type plasminogen activator system in amyotrophic lateral sclerosis.

  • M Glas‎ et al.
  • Experimental neurology‎
  • 2007‎

There is substantial evidence, implicating extracellular matrix (ECM) regulating enzymes in the pathogenesis of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The most important ECM-degrading proteases are serine proteases (plasminogen activators, PA) and matrix metalloproteinases (MMPs). Since the role of MMPs in ALS has been addressed recently, we investigated the expression of the serine protease urokinase-type plasminogen activator (uPA) and its receptor in ALS. Employing rtPCR, zymography and immunohistochemistry we analyzed the expression of uPA and its receptor uPAR in spinal cord tissue of ALS cases and in the G93A SOD1 transgenic mouse. In the ventral horn of the spinal cord of ALS cases we found increased uPAR staining of motor neurons. In G93A mice, the expression profile of uPA and uPAR mRNA was significantly increased starting at the age of 90 days as compared to non-transgenic littermates. The uPA-dependent plasminogen activation in G93A mice at endstage increased markedly compared with controls and immunostaining of the spinal cord from G93A mice revealed increased uPAR immunostaining in neurons. To determine the functional role of uPA, we investigated the effect of intraperitoneal (i.p.) administration of the uPA inhibitor WX-340 (10 mg/kg), starting at the age of 30 days (n=18). Treatment with WX-340 prolonged (p<0.05) survival of the animals (135+/-2 vs. 126+/-3) as well as improving rotarod performance. Our experiments demonstrate that uPA and its receptor are expressed in ALS patients and in an animal model of ALS. Early inhibition with a synthetic uPA inhibitor prolonged the life of the transgenic animals. These findings indicate that the urokinase-type plasminogen activator system may play a role in the complex pathogenesis of ALS.


Inhibitors of urokinase type plasminogen activator and cytostatic activity from crude plants extracts.

  • Xueqiang Zha‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2013‎

In view of the clear evidence that urokinase type plasminogen activator (uPA) plays an important role in the processes of tumor cell metastasis, aortic aneurysm, and multiple sclerosis, it has become a target of choice for pharmacological intervention. The goal of this study was thus to determine the presence of inhibitors of uPA in plants known traditionally for their anti-tumor properties. Crude methanol extracts were prepared from the leaves of plants (14) collected from the subtropical dry forest (Guanica, Puerto Rico), and tested for the presence of inhibitors of uPA using the fibrin plate assay. The extracts that tested positive (6) were then partitioned with petroleum ether, chloroform, ethyl acetate and n-butanol, in a sequential manner. The resulting fractions were then tested again using the fibrin plate assay. Extracts from leaves of Croton lucidus (C. lucidus) showed the presence of a strong uPA inhibitory activity. Serial dilutions of these C. lucidus partitions were performed to determine the uPA inhibition IC₅₀ values. The chloroform extract showed the lowest IC₅₀ value (3.52 µg/mL) and hence contained the most potent uPA inhibitor. Further investigations revealed that the crude methanol extract and its chloroform and n-butanol partitions did not significantly inhibit closely related proteases such as the tissue type plasminogen activator (tPA) and plasmin, indicating their selectivity for uPA, and hence superior potential for medicinal use with fewer side effects. In a further evaluation of their therapeutic potential for prevention of cancer metastasis, the C. lucidus extracts displayed cytostatic activity against human pancreatic carcinoma (PaCa-2) cells, as determined through an MTS assay. The cytostatic activities recorded for each of the partitions correlated with their relative uPA inhibitory activities. There are no existing reports of uPA inhibitors being present in any of the plants reported in this study.


EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression.

  • Géraldine Lescaille‎ et al.
  • BMC cancer‎
  • 2012‎

An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression.


Soluble urokinase-type plasminogen activator receptor improves early risk stratification in cardiogenic shock.

  • Mari Hongisto‎ et al.
  • European heart journal. Acute cardiovascular care‎
  • 2022‎

Soluble urokinase-type plasminogen activator receptor (suPAR) is a biomarker reflecting the level of immune activation. It has been shown to have prognostic value in acute coronary syndrome and heart failure as well as in critical illness. Considering the complex pathophysiology of cardiogenic shock (CS), we hypothesized suPAR might have prognostic properties in CS as well. The aim of this study was to assess the kinetics and prognostic utility of suPAR in CS.


Inhibition of urokinase-type plasminogen activator expression by dihydroartemisinin in breast cancer cells.

  • Shuqun Zhang‎ et al.
  • Oncology letters‎
  • 2014‎

The aim of the present study was to investigate the inhibitory effects of dihydroartemisinin (DHA) on the primary tumor growth and metastasis of the human breast cancer cell line, MDA-MB-231, in vitro. The expression levels of urokinase-type plasminogen activator (uPA) were detected by immunocytochemistry in two cell lines (MCF-7 and MDA-MB-231). The MDA-MB-231 cell activity was inhibited by various concentration gradients of DHA. The inhibitory rate, cell growth curve and apoptotic morphological observations were obtained using the MTT assay at 0, 24, 48 and 72 h. Cell scratch migration was performed at various time-points to test the cell proliferation and migration capacity. Reverse transcription-polymerase chain reaction was used to analyze the effect of DHA on uPA mRNA expression in breast cancer cells. The human breast cancer cell line, MDA-MB-231, possesses higher metastatic potential and relatively higher expression of uPA when compared with the MCF-7 cell line. DHA was found to inhibit the proliferation and migration capacity of the cell line, MDA-MB-231, in vitro. The growth inhibition occurred in a time- and dose-dependent manner, with IC50 values of 117.76±0.04, 60.26±0.12 and 52.96±0.07 μmol/l following 24, 48 and 72 h, respectively. The inhibition of uPA was observed to decrease breast cancer cell growth and migration. Thus, results of the present study indicate that DHA may be used for further studies with regard to breast cancer therapy.


Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer.

  • Nunzia Montuori‎ et al.
  • Translational medicine @ UniSa‎
  • 2016‎

The urokinase (uPA)-type plasminogen activator receptor (uPAR) is a GPI-anchored receptor that focuses urokinase (uPA) proteolytic activity on the cell surface. uPAR also regulates cell adhesion, migration and proliferation, protects from apoptosis and contributes to epithelial mesenchymal transition (EMT), independently of uPA enzymatic activity. Indeed, uPAR interacts with beta1, beta2 and beta3 integrins, thus regulating their activities. uPAR cross-talks with receptor tyrosine kinases through integrins and regulates cancer cell dormancy, proliferation and angiogenesis. Moreover, uPAR mediates uPA-dependent cell migration and chemotaxis induced by fMet-Leu-Phe (fMLF), through its association with fMLF-receptors (fMLF-Rs). Further, uPAR is an adhesion receptor because it binds vitronectin (VN), a component of provisional extracellular matrix. High uPAR expression predicts for more aggressive disease in several cancer types for its ability to increase invasion and metastasis. In fact, uPAR has been hypothesized to be the link between tumor cell dormancy and proliferation that usually precedes the onset of metastasis. Thus, inhibiting uPAR could be a feasible approach to affect tumor growth and metastasis. Here, we review the more recent advances in the development of uPAR-targeted anti-cancer therapeutic agents suitable for further optimization or ready for the evaluation in early clinical trials.


Inhibiting the urokinase-type plasminogen activator receptor system recovers STZ-induced diabetic nephropathy.

  • Massimo Dal Monte‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

The urokinase-type plasminogen activator (uPA) receptor (uPAR) participates to the mechanisms causing renal damage in response to hyperglycaemia. The main function of uPAR in podocytes (as well as soluble uPAR -(s)uPAR- from circulation) is to regulate podocyte function through αvβ3 integrin/Rac-1. We addressed the question of whether blocking the uPAR pathway with the small peptide UPARANT, which inhibits uPAR binding to the formyl peptide receptors (FPRs) can improve kidney lesions in a rat model of streptozotocin (STZ)-induced diabetes. The concentration of systemically administered UPARANT was measured in the plasma, in kidney and liver extracts and UPARANT effects on dysregulated uPAR pathway, αvβ3 integrin/Rac-1 activity, renal fibrosis and kidney morphology were determined. UPARANT was found to revert STZ-induced up-regulation of uPA levels and activity, while uPAR on podocytes and (s)uPAR were unaffected. In glomeruli, UPARANT inhibited FPR2 expression suggesting that the drug may act downstream uPAR, and recovered the increased activity of the αvβ3 integrin/Rac-1 pathway indicating a major role of uPAR in regulating podocyte function. At the functional level, UPARANT was shown to ameliorate: (a) the standard renal parameters, (b) the vascular permeability, (c) the renal inflammation, (d) the renal fibrosis including dysregulated plasminogen-plasmin system, extracellular matrix accumulation and glomerular fibrotic areas and (e) morphological alterations of the glomerulus including diseased filtration barrier. These results provide the first demonstration that blocking the uPAR pathway can improve diabetic kidney lesion in the STZ model, thus suggesting the uPA/uPAR system as a promising target for the development of novel uPAR-targeting approaches.


Extracellular alpha 6 integrin cleavage by urokinase-type plasminogen activator in human prostate cancer.

  • Manolis C Demetriou‎ et al.
  • Experimental cell research‎
  • 2004‎

During human prostate cancer progression, the integrin alpha6beta1 (laminin receptor) is expressed on the cancer cell surface during invasion and in lymph node metastases. We previously identified a novel structural variant of the alpha6 integrin called alpha6p. This variant was produced on the cell surface and was missing the beta-barrel extracellular domain. Using several different concentrations of amiloride, aminobenzamidine and PAI-1 and the urokinase-type plasminogen activator (uPA) function-blocking antibody (3689), we showed that uPA, acting as a protease, is responsible for production of alpha6p. We also showed that addition of uPA in the culture media of cells that do not produce alpha6p, resulted in a dose-dependent alpha6p production. In contrast, the addition of uPA did not result in the cleavage of other integrins. Using alpha2-antiplasmin and plasmin depleted media, we observed that uPA cleaves the alpha6 integrin directly. Further, 12-o-tetradecanoyl-phorbol-13-acetate (TPA) induced the production of alpha6p, and this induction was abolished by PAI-1 but not alpha2-antiplasmin. Finally, the alpha6p integrin variant was detected in invasive human prostate carcinoma tissue indicating that this is not a tissue culture phenomenon. These data, taken together, suggest that this is a novel function of uPA, that is, to remove the beta-barrel ligand-binding domain of the integrin while preserving its heterodimer association.


Terminalia catappa attenuates urokinase-type plasminogen activator expression through Erk pathways in Hepatocellular carcinoma.

  • Chao-Bin Yeh‎ et al.
  • BMC complementary and alternative medicine‎
  • 2014‎

The survival rate of malignant tumors, and especially hepatocellular carcinoma (HCC), has not improved primarily because of uncontrolled metastasis. In our previous studies, we have reported that Terminalia catappa leaf extract (TCE) exerts antimetastasis effects on HCC cells. However, the molecular mechanisms of urokinase-type plasminogen activator (u-PA) in HCC metastasis have not been thoroughly investigated, and remain poorly understood.


Exogenous Urokinase Inhibits Proteasomal Degradation of Its Cognate Urokinase Plasminogen Activator Receptor.

  • Ran Zhu‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Acute pulmonary embolism (APE) is a debilitating condition with high incidence and mortality rates. APE is widely treated with the serine protease urokinase or urokinase-type plasminogen activator (uPA) that functions by resolving blood clots via catalyzing the conversion of plasminogen to plasmin. Treatment with recombinant uPA has been shown to increase endogenous expression of uPA and its cognate receptor, uPAR; however, the mechanisms for this induction are not known. Using an in vitro hypoxia/reoxygenation model in bronchial epithelial BEAS-2B cells, we show that induction of hypoxia/reoxygenation induces apoptosis and increases secretion of tumor necrosis factor-alpha, brain natriuretic peptide, and fractalkine, which are attenuated when treated with exogenous uPA. Induction of hypoxia/reoxygenation resulted in decreased expression of uPAR on cell surface without any significant changes in its messenger RNA expression, highlighting post-transcriptional regulatory mechanisms. Determination of uPAR protein half-life using cycloheximide showed treatment with uPA significantly increased its half-life (209.6 ± 0.2 min from 48.2 ± 2.3 min). Hypoxia/reoxygenation promoted the degradation of uPAR. Inhibition of proteasome-mediated degradation using MG-132 and lactacystin revealed that uPAR was actively degraded when hypoxia/reoxygenation was induced and that it was reversed when treated with exogenous uPA. Determination of the proteolytic activity of 20S proteasome showed a global increase in ubiquitin-proteasome activation without an increase in proteasome content in cells subjected to hypoxia/reoxygenation. Our results cumulatively reveal that uPAR is actively degraded following hypoxia/reoxygenation, and the degradation was significantly weakened by exogenous uPA treatment. Given the importance of the uPA/uPAR axis in a multitude of pathophysiological contexts, these findings provide important yet undefined mechanistic insights.


Mice deficient in urokinase-type plasminogen activator have delayed healing of tympanic membrane perforations.

  • Yue Shen‎ et al.
  • PloS one‎
  • 2012‎

Mice deficient in plasminogen, the precursor of plasmin, show completely arrested healing of tympanic membrane (TM) perforations, indicating that plasmin plays an essential role in TM healing. The activation of plasminogen to plasmin is performed by two plasminogen activators (PAs), urokinase-type PA (uPA) and tissue-type PA (tPA). To elucidate the functional roles of PAs in the healing of TM perforations, we investigated the phenotypes of single gene-deficient mice lacking uPA (uPA(-/-)) or tPA (tPA(-/-)) after TM perforation. Delayed healing of TM perforations was observed in uPA(-/-) mice but not tPA(-/-) mice. The migration of keratinocytes was clearly delayed and seemed to be misoriented in uPA(-/-) mice. Furthermore, fibrin deposition and the inflammatory response were persistent in these mice. Our findings demonstrate that uPA plays a role in the healing of TM perforations. The observed phenotypes in uPA(-/-) mice are most likely due to the reduced generation of plasmin.


Ligand binding modulates the structural dynamics and activity of urokinase-type plasminogen activator: A possible mechanism of plasminogen activation.

  • Tobias Kromann-Hansen‎ et al.
  • PloS one‎
  • 2018‎

The catalytic activity of trypsin-like serine proteases is in many cases regulated by conformational changes initiated by binding of physiological modulators to exosites located distantly from the active site. A trypsin-like serine protease of particular interest is urokinase-type plasminogen activator (uPA), which is involved in extracellular tissue remodeling processes. Herein, we used hydrogen/deuterium exchange mass spectrometry (HDXMS) to study regulation of activity in the catalytic domain of the murine version of uPA (muPA) by two muPA specific monoclonal antibodies. Using a truncated muPA variant (muPA16-243), containing the catalytic domain only, we show that the two monoclonal antibodies, despite binding to an overlapping epitope in the 37s and 70s loops of muPA16-243, stabilize distinct muPA16-243 conformations. Whereas the inhibitory antibody, mU1 was found to increase the conformational flexibility of muPA16-243, the stimulatory antibody, mU3, decreased muPA16-243 conformational flexibility. Furthermore, the HDXMS data unveil the existence of a pathway connecting the 70s loop to the active site region. Using alanine scanning mutagenesis, we further identify the 70s loop as an important exosite for the activation of the physiological uPA substrate plasminogen. Thus, the data presented here reveal important information about dynamics in uPA by demonstrating how various ligands can modulate uPA activity by mediating long-range conformational changes. Moreover, the results provide a possible mechanism of plasminogen activation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: